目标检测与识别技术
使用Opencv自带的HOGDescriptor函数检测人:利用的是HOG和SVM方法
import cv2
import numpy as np
def is_inside(o, i):
ox, oy, ow, oh = o
ix, iy, iw, ih = i
return ox > ix and oy > iy and ox + ow < ix + iw and oy + oh < iy + ih
def draw_person(image, person):
x, y, w, h = person
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 2)
img = cv2.imread("people.jpg")
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
found, w = hog.detectMultiScale(img)#, winStride=(8,8),scale=1.05
found_filtered = []
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and is_inside(r, q):
break
else:
found_filtered.append(r)
for person in found_filtered:
draw_person(img, person)
cv2.imshow("people detection", img)
pic = cv2.resize(img, (400, 400), interpolation=cv2.INTER_CUBIC)
cv2.waitKey(0)
cv2.destroyAllWindows()
实际检测出来的效果并不好,可能是自己太菜了,还不会调
车训练集网址:http://ai.stanford.edu/~jkrause/cars/car_dataset.html
汽车检测
为了使结果的准确度在可接受范围内,许哟啊一个足够大的数据集,包括训练推向的大小要一样
训练集:
输入:
import cv2
import numpy as np
from os.path import join
datapath = "./TrainCarImages"
def path(cls,i):
return "%s/%s%d.jpg" % (datapath,cls,i+1)
pos, neg = "pos", "neg"
#print(path(pos,0))
detect = cv2.xfeatures2d.SIFT_create()
extract = cv2.xfeatures2d.SIFT_create()
flann_params = dict(algorithm = 1, trees = 5)
matcher = cv2.FlannBasedMatcher(flann_params, {})
bow_kmeans_trainer = cv2.BOWKMeansTrainer(40)
extract_bow = cv2.BOWImgDescriptorExtractor(extract, matcher)
def extract_sift(fn):
im = cv2.imread(fn,0)
return extract.compute(im, detect.detect(im))[1]
for i in range(8):
bow_kmeans_trainer.add(extract_sift(path(pos,i)))
bow_kmeans_trainer.add(extract_sift(path(neg,i)))
voc = bow_kmeans_trainer.cluster()
extract_bow.setVocabulary( voc )
def bow_features(fn):
im = cv2.imread(fn,0)
return extract_bow.compute(im, detect.detect(im))
traindata, trainlabels = [],[]
for i in range(20):
# print(i)
traindata.extend(bow_features(path(pos, i)))
trainlabels.append(1)
traindata.extend(bow_features(path(neg, i)))
trainlabels.append(-1)
svm = cv2.ml.SVM_create()
svm.train(np.array(traindata), cv2.ml.ROW_SAMPLE, np.array(trainlabels))
def predict(fn):
f = bow_features(fn);
p = svm.predict(f)
print (fn, "\t", p[1][0][0])
return p
car, notcar = "car.jpg", "dd.jpg"
car_img = cv2.imread(car)
notcar_img = cv2.imread(notcar)
car_predict = predict(car)
not_car_predict = predict(notcar)
font = cv2.FONT_HERSHEY_SIMPLEX
if (car_predict[1][0][0] == 1.0):
cv2.putText(car_img,'Car Detected',(10,30), font, 1,(0,255,0),2,cv2.LINE_AA)
print('not_car_predict',not_car_predict[1][0][0])
if (not_car_predict[1][0][0] == -1.0):
cv2.putText(notcar_img,'Car Not Detected',(10,30), font, 1,(0,0, 255),2,cv2.LINE_AA)
cv2.imshow('BOW + SVM Success', car_img)
cv2.imshow('BOW + SVM Failure', notcar_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
输出:
在实际验证过程中发现,是否识别为Car Not Detected与负样本有很大关系,如果目标样本与负样本区别很大的话,很可能会被识别为正样本。
造成的原因可能是负样本的单一性,以及训练集数量过少等
汽车检测:
项目结构:
changefilesname.py
import cv2
import numpy as np
from car_detector.detector import car_detector, bow_features
from car_detector.pyramid import pyramid
from car_detector.non_maximum import non_max_suppression_fast as nms
from car_detector.sliding_window import sliding_window
import urllib.request
def in_range(number, test, thresh=0.2):
return abs(number - test) < thresh
test_image = "testcar.jpg"
#img_path = "testcars.jpg"
#urllib.urlretrieve(test_image, img_path)
#urllib.request.urlretrieve(test_image, img_path)
svm, extractor = car_detector()
detect = cv2.xfeatures2d.SIFT_create()
w, h = 100, 40
img = cv2.imread(test_image)
#img = cv2.imread(test_image)
rectangles = []
counter = 1
scaleFactor = 1.25
scale = 1
font = cv2.FONT_HERSHEY_PLAIN
for resized in pyramid(img, scaleFactor):
scale = float(img.shape[1]) / float(resized.shape[1])
for (x, y, roi) in sliding_window(resized, 20, (100, 40)):
if roi.shape[1] != w or roi.shape[0] != h:
continue
try:
bf = bow_features(roi, extractor, detect)
_, result = svm.predict(bf)
a, res = svm.predict(bf, flags=cv2.ml.STAT_MODEL_RAW_OUTPUT | cv2.ml.STAT_MODEL_UPDATE_MODEL)
print ("Class: %d, Score: %f, a: %s" % (result[0][0], res[0][0], res))
score = res[0][0]
if result[0][0] == 1:
if score < -1.0:
rx, ry, rx2, ry2 = int(x * scale), int(y * scale), int((x+w) * scale), int((y+h) * scale)
rectangles.append([rx, ry, rx2, ry2, abs(score)])
except:
pass
counter += 1
windows = np.array(rectangles)
boxes = nms(windows, 0.25)
for (x, y, x2, y2, score) in boxes:
print (x, y, x2, y2, score)
cv2.rectangle(img, (int(x),int(y)),(int(x2), int(y2)),(0, 255, 0), 1)
cv2.putText(img, "%f" % score, (int(x),int(y)), font, 1, (0, 255, 0))
cv2.imshow("img", img)
cv2.waitKey(0)
detector.py
import cv2
import numpy as np
datapath = "./TrainCarImages"
SAMPLES = 20
def path(cls,i):
return "%s/%s%d.jpg" % (datapath,cls,i+1)
def get_flann_matcher():
flann_params = dict(algorithm = 1, trees = 5)
return cv2.FlannBasedMatcher(flann_params, {})
def get_bow_extractor(extract, match):
return cv2.BOWImgDescriptorExtractor(extract, match)
def get_extract_detect():
return cv2.xfeatures2d.SIFT_create(), cv2.xfeatures2d.SIFT_create()
def extract_sift(fn, extractor, detector):
im = cv2.imread(fn,0)
return extractor.compute(im, detector.detect(im))[1]
def bow_features(img, extractor_bow, detector):
return extractor_bow.compute(img, detector.detect(img))
def car_detector():
pos, neg = "pos", "neg"
detect, extract = get_extract_detect()
matcher = get_flann_matcher()
#extract_bow = get_bow_extractor(extract, matcher)
print ("building BOWKMeansTrainer...")
bow_kmeans_trainer = cv2.BOWKMeansTrainer(12)
extract_bow = cv2.BOWImgDescriptorExtractor(extract, matcher)
print ("adding features to trainer")
for i in range(SAMPLES):
print (i)
print('path(pos,i):',path(pos,i))
bow_kmeans_trainer.add(extract_sift(path(pos,i), extract, detect))
#bow_kmeans_trainer.add(extract_sift(path(neg,i), extract, detect))
vocabulary = bow_kmeans_trainer.cluster()
extract_bow.setVocabulary(vocabulary)
traindata, trainlabels = [],[]
print ("adding to train data")
for i in range(SAMPLES):
print (i)
traindata.extend(bow_features(cv2.imread(path(pos, i), 0), extract_bow, detect))
trainlabels.append(1)
traindata.extend(bow_features(cv2.imread(path(neg, i), 0), extract_bow, detect))
trainlabels.append(-1)
svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setGamma(1)
svm.setC(35)
svm.setKernel(cv2.ml.SVM_RBF)
svm.train(np.array(traindata), cv2.ml.ROW_SAMPLE, np.array(trainlabels))
return svm, extract_bow
pyramid.py
import cv2
def resize(img, scaleFactor):
return cv2.resize(img, (int(img.shape[1] * (1 / scaleFactor)), int(img.shape[0] * (1 / scaleFactor))), interpolation=cv2.INTER_AREA)
def pyramid(image, scale=1.5, minSize=(200, 80)):
yield image
while True:
image = resize(image, scale)
if image.shape[0] < minSize[1] or image.shape[1] < minSize[0]:
break
yield image
non_maximum.py
# import the necessary packages
import numpy as np
# Malisiewicz et al.
# Python port by Adrian Rosebrock
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
scores = boxes[:,4]
# compute the area of the bounding boxes and sort the bounding
# boxes by the score/probability of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(scores)[::-1]
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return boxes[pick].astype("int")
sliding_window.py
def sliding_window(image, step, window_size):
for y in range(0, image.shape[0], step):
for x in range(0, image.shape[1], step):
yield (x, y, image[y:y + window_size[1], x:x + window_size[0]])
输出:
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
Class: -1, Score: 1.113939, a: [[ 1.11393857]]
Class: -1, Score: 2.090496, a: [[ 2.09049606]]
Class: -1, Score: 2.090496, a: [[ 2.09049606]]
Class: -1, Score: 2.090496, a: [[ 2.09049606]]
Class: -1, Score: 2.963510, a: [[ 2.96351004]]
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols == var_count && samples.type() == 5) in cv::ml::SVMImpl::predict, file C:\projects\opencv-python\opencv\modules\ml\src\svm.cpp, line 2005
OpenCV(3.4.1) Error: Assertion failed (samples.cols &#