How to generate schedule

本文介绍了一个具体的数据库操作流程,包括使用正确的参数运行SQL脚本、完成预算预测导入、部门工作负载任务导入及收入单位预测导入等三项任务,并依据Generateschedule_Official.xls文件指示继续执行剩余任务。此外还提到了预测依赖于前一周的数据以及计划安排依赖于本周预测。

1.run the sql script with the correct parameter

sqlplus -s dbuser/dbpass@SID @lasddl.sql LOCATION_NAME DATE

2.finish following 3 tasks:

a.Budget Forecast Import
b. Dept Wrkld Tasks Import
c. Revenue Unit Projections Import

3.run the left  tasks follow the Generate schedule_Official.xls

begin with step2

 

memo:

forcasting depends on last week forcasting

and the schedule depends on this week's forcasting!

class cuda: # CUDA arch to use for CUDA template kernel compilation. # e.g. "70", "75", "80", "90", etc. # When arch is None, Inductor uses torch.cuda.get_device_capability(0). arch: Optional[str] = None # CUDA version to use for CUDA template kernel compilation. # e.g. "11.4", "12.1", etc. # When version is None, Inductor uses torch.version.cuda. version: Optional[str] = None # Optimization level for the host compiler. compile_opt_level: Literal["-O0", "-O1", "-O2", "-O3", "-OS"] = "-O1" # Whether to enable device LTO (link-time-optimization). enable_cuda_lto = False # Whether to keep intermediate files dring compilation. enable_ptxas_info = False # Whether to enable debug info, e.g. line number, cutlass debug info. enable_debug_info = False # Whether to use fast math. use_fast_math = False # Path to the CUTLASS repo root directory. # The default path only works under PyTorch local development environment. cutlass_dir = os.environ.get( "TORCHINDUCTOR_CUTLASS_DIR", os.path.abspath( os.path.join(os.path.dirname(torch.__file__), "../third_party/cutlass/") ), ) # Configures the maximum number of CUTLASS configs to profile in max_autotune. # By default it's None, so that all CUTLASS configs are tuned. # This is mainly used to reduce test time in CI. cutlass_max_profiling_configs: Optional[int] = None # The L2 swizzle values to consider when profiling CUTLASS configs in max_autotune. cutlass_max_profiling_swizzle_options: list[int] = [1, 2, 4] # Path to CUDA NVCC. # NVCC search order: # 1) cuda_cxx set in this config # 2) CUDACXX environment variable # 3) CUDA_HOME environment variable # 4) default system search PATH. cuda_cxx: Optional[str] = None # Minimum value of M*N*K to consider the CUTLASS backend for GEMM ops. cutlass_backend_min_gemm_size: int = 1 # enable generation of inline standalone runner in CUDA CPP generated code # which allows to compile the generated code into a standalone executable. generate_test_runner: bool = ( os.environ.get("INDUCTOR_CUDA_BACKEND_GENERATE_TEST_RUNNER_CODE", "0") == "1" ) # Keep only Cutlass op configs which contain this regular expression pattern # Set this to "warpspecialized_cooperative_epi_tma" to enable only SM90 TMA Cutlass Kernels for large GEMMs cutlass_op_allowlist_regex: Optional[str] = os.environ.get( "TORCHINDUCTOR_CUTLASS_ALLOWLIST" ) # Note: Names of Cutlass ops names can be obtained by calling # op.configuration_name() on a Cutlass op instance, for example those # returned from cutlass_utils.gen_ops() or the op argument passed to # CUTLASSGemmTemplate.render(...) # Filter Cutlass configs which contain this regular expression pattern # Set this to "pingpong" to avoid numerical issues # caused by the op ordering of the "pingpong" memory access # pattern used by some Cutlass Kernels. cutlass_op_denylist_regex: Optional[str] = os.environ.get( "TORCHINDUCTOR_CUTLASS_DENYLIST" ) # Non-negative integer which determines how many kernels are instantiated. # 0 = 0000 generates the fewest kernels, 9999 generates all possible combinations. # increasing first digit reduces schedule / mixed type pruning, # increasing second digit generates more cluster sizes, # increasing third digit generates more MMA multipliers, # increasing fourth digit generates more instruction shapes. cutlass_instantiation_level: str = os.environ.get( "TORCHINDUCTOR_CUTLASS_INSTANTIATION_LEVEL", "0" )
最新发布
06-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值