华中科技 -1472

解法实则是hash表的运用,hash[次数]=系数

#include<cstdio>  
#include<cstring> 
#include<iostream>
using namespace std;
int array[2001];  
  
int main () {  
    int n,m,i,a,b,first;  
    while (scanf("%d",&n) != EOF){  
        first = 1;  
        memset(array,0,sizeof(array));  
        //多项式一  
        for(i = 0;i < n;i ++){  
            scanf ("%d %d",&a,&b);  
            array[b + 1000] = a;  //保存次数,,用的是hash表的方法
        }  
        //多项式二  
        scanf("%d",&m);  
        for(i = 0;i < m;i ++){  
            scanf ("%d %d",&a,&b);  
            //相同次数系数相加  
            array[b + 1000] += a;  
        }  
        //输出  
        for(i = 2001;i >= 0;i --){  
            //系数为0的整数对不用输出  
            if(array[i] == 0){  
                continue;  
            }  
            //控制格式  
            if(first){  
                first = 0;  
            }  
            else{  
                printf(" ");  
            }  
            printf("%d %d",array[i],i - 1000);  
        }  
        printf("\n");  
    }  
    return 0;  
}  

内容概要:本文档详细介绍了一个基于MATLAB实现的电力负荷预测项目,该项目运用遗传算法(GA)优化支持向量回归(SVR)和支持向量机(SVM)模型的超参数及特征选择。项目旨在解决电力系统调度、发电计划、需求侧响应等多个应用场景中的关键问题,特别是在应对高比例可再生能源接入带来的非线性、非平稳负荷预测挑战。文中涵盖了从数据接入、特征工程、模型训练到部署上线的全流程,包括详细的代码示例和GUI设计,确保方案的可复现性和实用性。 适用人群:具备一定编程基础,尤其是熟悉MATLAB语言和机器学习算法的研发人员;从事电力系统调度、电力市场交易、新能源消纳等相关领域的工程师和技术专家。 使用场景及目标:①通过构建面向小时级别的滚动预测,输出高分辨率负荷轨迹,为日内与日前滚动调度提供边际成本最小化的依据;②在负荷高峰和供给紧张时,通过价格信号或直接负荷控制实施需求侧响应,提升削峰效率并抑制反弹;③为灵活性资源(调峰机组、储能、可中断负荷)提供更清晰的出清路径,降低弃风弃光率,提升系统整体清洁度;④帮助市场主体更准确地评估边际出清价格变化,提高报价成功率与收益稳定性,同时降低由预测偏差带来的风险敞口;⑤在运维与审计场景中,对预测产生的原因进行说明,保障业务侧与监管侧的可追溯性。 阅读建议:此资源不仅提供了完整的代码实现和GUI设计,更注重于理解GA优化过程中涉及到的数据处理、特征构造、模型选择及评估等核心步骤。因此,在学习过程中,建议结合实际案例进行实践,并深入研究每个阶段的具体实现细节,特别是适应度函数的设计、超参数空间的定义以及多样性维护机制的应用。此外,关注项目中关于数据对齐、缺失值处理、特征标准化等方面的最佳实践,有助于提高模型的鲁棒性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值