简介
协同过滤,Collaborative Filtering,简称CF,广泛应用于如今的推荐系统中。通过协同过滤算法,可以算出两个相似度:user-user相似度矩阵; item-item相似度矩阵。
为什么叫做协同过滤?是因为这两个相似度矩阵是通过对方来计算出来的。举个栗子:100个用户同时购买了两种物品A和B,得出在item-item相似度矩阵中A和B的相似度为0.8; 1000个物品同时被用户C和用户D购买,得出在user-user相似度矩阵中C和D的相似度是0.9. user-user, item-item的相似度都是通过用户行为数据来计算出来的。
计算相似度的具体算法,大概有几种:欧几里得距离,皮尔逊相关系数,Cosine相似度,Tanimoto系数。具体的算法,有兴趣的同学可以google.