Mapper,Reducer,Wrapper的Java模板

本文提供了一个快速创建和运行Hadoop任务的模板代码,包括Mapper类、Reducer类和Wrapper类的实现。代码中包含了空模板,允许用户替换为自己的类名,并详细解释了每个组件的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.easyigloo.org/?p=1145


很多时候想要测试hadoop上的一个想法,要求快速创建并运行任务。每个任务包含了至少3个组件。

Mapper类
Reducer类
Wrapper类

下面的代码用以产生空模板,只是将变量替换成自己的类名

MAPPER
-----------------------------------------------------------------------------------------------------------------------------------
MAPPER
-----------------------------------------------------------------------------------------------------------------------------------
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import java.io.IOException;

/* In case you are using Multiple outputs */
//import org.apache.hadoop.io.NullWritable;
//import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

public class Mapper extends Mapper {
private Configuration conf;
private Text outputKey = new Text();
private Text outputValue = new Text();
private String line = null;

/* In case you are using Multiple outputs */
//private NullWritable outputValue = NullWritable.get();
//private MultipleOutputs contextMulti = null;

@Override
public void setup(Mapper.Context context) {
this.conf = context.getConfiguration();

/* In case you are using Multiple outputs */
//contextMulti = new MultipleOutputs(context);
}

@Override
public void map(LongWritable key, Text values, Context context)
throws IOException, InterruptedException {
}

@Override
public void cleanup (Mapper.Context context)throws IOException, InterruptedException {

/* In case you are using Multiple outputs */
//contextMulti.close();
}
}

-----------------------------------------------------------------------------------------------------------------------------------
REDUCER
-----------------------------------------------------------------------------------------------------------------------------------
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/* In case you are using Multiple outputs */
//import org.apache.hadoop.io.NullWritable;
//import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;

public class Reducer extends Reducer {
private Configuration conf;
private Text outputKey = new Text();
private Text outputValue = new Text();
private String line = null;

/* In case you are using Multiple outputs */
//private NullWritable outputValue = NullWritable.get();
//private MultipleOutputs contextMulti = null;

@Override
public void setup(Reducer.Context context) {
this.conf = context.getConfiguration();

/* In case you are using Multiple outputs */
//contextMulti = new MultipleOutputs(context);
}

@Override
public void reduce(Text key, Iterable values, Context context)
throws IOException, InterruptedException {
}

@Override
public void cleanup(Reducer.Context context) {
/* In case you are using Multiple outputs */
//contextMulti.close();
}
}
-----------------------------------------------------------------------------------------------------------------------------------
WRAPPER
这个类用到下面两个类

https://sites.google.com/site/hadoopandhive/home/ExtendedFileUtil.java?attredirects=0&d=1

https://sites.google.com/site/hadoopandhive/home/StringUtil.java?attredirects=0&d=1

-----------------------------------------------------------------------------------------------------------------------------------

import StringUtil;

import ExtendedFileUtil;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.text.ParseException;

public class extends Configured implements Tool, Constants {
private Configuration conf = null;
private Job job = null;
private String inputDirList = null;
private String outputDir = null;
private String[] filesToProcess = null;
private int totalReducers = 0;
private int jobRes = 0;
private ExtendedFileUtil fileUtil = new ExtendedFileUtil();

public static void main(String[] args) throws Exception {
ob = new ();
int jobRes = ToolRunner.run(ob, args);
}

public int run(String[] args)
throws ClassNotFoundException, IOException, InterruptedException, ParseException {
jobRes = readCmdArgs(args);
if (jobRes == 0) {
jobRes = readConfig();
}
if (jobRes == 0) {
jobRes = runMrJob();
}
return jobRes;
}

private int readCmdArgs(String[] args) {
if (args.length == 2) {
inputDirList = args[0];
outputDir = args[1];
} else {
printUsage();
System.exit(1);
}
return 0;
}

private int readConfig() throws IOException, InterruptedException, ClassNotFoundException {
conf = new Configuration();
//conf.set("SET_NEW_CONFIG_NAME", SET_NEW_CONFIG_VALUE);
job = new Job(conf);
if ((job.getJar() == null) || (job.getJar() == "")) {
job.setJarByClass(.class);
}
return 0;
}

private int runMrJob()
throws IOException, InterruptedException, ClassNotFoundException {
filesToProcess = fileUtil.getFilesOnly(inputDirList, true);
job.setJobName("");
TextInputFormat.addInputPaths(job, StringUtil.arrayToString(filesToProcess, ","));
TextOutputFormat.setOutputPath(job, new Path(outputDir));
System.out.println("Input Dir: " + inputDirList);
System.out.println("Output Dir: " + outputDir);

job.setMapperClass(Mapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);

job.setReducerClass(Reducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
totalReducers = Math.round((fileUtil.size(inputDirList) / 134217728) * 0.1F);
totalReducers = Math.max(totalReducers, 1);
job.setNumReduceTasks(totalReducers );
deleteOutputDirectory(outputDir);
jobRes = job.waitForCompletion(true) ? 0 : 1;
deleteLogsDirectory();
fileUtil.removeAllZeroByteFiles(outputDir);
return 0;
}

private int deleteOutputDirectory(String outputDir) throws IOException {
fileUtil.removeHdfsPath(new Path(outputDir).toString());
return 0;
}

private int printUsage() {
System.out.println("USAGE:
");
return 0;
}

private int deleteLogsDirectory()
throws IOException {
Path outputLogPath = new Path(new Path(outputDir).toString() + "/" + "_logs");
fileUtil.removeHdfsPath(outputLogPath.toString());
return 0;
}
}
# ==================== 5. 函数的高级特性 ==================== """ 📚 高级特性: 1. 闭包:函数记住并访问创建环境的能力 2. 递归:函数调用自身 3. 装饰器:增强函数功能而不修改原代码 4. 高阶函数:接收函数作为参数或返回函数 """ # 示例1:递归函数 def factorial(n): """计算阶乘(递归实现) 参数: n (int) - 非负整数 返回: int - n的阶乘 """ if n < 0: # 处理负数输入 raise ValueError("阶乘只定义在非负整数") if n == 0: # 基本情况 return 1 return n * factorial(n - 1) # 递归调用 # 测试示例1 print("\n=== 示例1: 递归函数 ===") print("5! =", factorial(5)) # 120 # 示例2:装饰器 def log_execution_time(func): """记录函数执行时间的装饰器""" def wrapper(*args, **kwargs): import time start_time = time.time() # 记录开始时间 result = func(*args, **kwargs) # 调用原始函数 end_time = time.time() # 记录结束时间 elapsed = end_time - start_time # 计算耗时 print(f"{func.__name__} 执行时间: {elapsed:.6f}秒") return result return wrapper @log_execution_time # 应用装饰器 def process_large_data(size): """处理大量数据(模拟耗时操作)""" return sum(range(size)) # 计算累加和 # 测试示例2 print("\n=== 示例2: 装饰器 ===") process_large_data(1000000) # 调用被装饰的函数 # 示例3:高阶函数 def apply_operation(data, operation): """应用操作到数据集的每个元素 参数: data (list) - 数据列表 operation (function) - 要应用的函数 返回: list - 应用操作后的结果列表 """ return [operation(item) for item in data] # 列表推导式应用函数 # 测试示例3 print("\n=== 示例3: 高阶函数 ===") numbers = [1, 2, 3, 4, 5] squared = apply_operation(numbers, lambda x: x ** 2) # 应用平方函数 cubed = apply_operation(numbers, lambda x: x ** 3) # 应用立方函数 print("原始数据:", numbers) print("平方结果:", squared) print("立方结果:", cubed) 这里有个问题,第一个问题,没有把每个特性都讲清楚,第二问题,示例缺少,每一个特性至少两个代码示例,第三个问题,每一行都要有注释,按照我的要求,重新返回一个py文件
最新发布
08-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值