scikit-learn中关于回归有好多方法
1. Logistic Regression
LR模型在scikit-learn中至少有两处可以用:
① 在SGDClassifier中:
文档地址:SGDClassifier
from sklearn.linear_model import SGDClassifier
clf = SGDClassifier(loss = 'log', penalty = 'l2')
clf.fit(train_x, train_y) # x is like-array type, shape = [numSamples, numFeatures], y is like-array type
pred_y = clf.predict(test_x) # return numpy.ndarray type
print clf.coef_ # 打印参数
print clf.intercept_ # 打印截距项
② 在LogisticRegression中:
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(penalty = 'l2')
clf.fit(train_x, train_y) # x is like-array type, shape = [numSamples, numFeatures], y is like-array type
pred_y = clf.predict(test_x) # return numpy.ndarray type
print clf.coef_ # 打印参数
print clf.intercept_ # 打印截距项

本文介绍了scikit-learn中多种回归方法,特别聚焦于LogisticRegression的应用,包括如何在SGDClassifier和LogisticRegression中使用,详细说明了参数输出与预测过程。
5万+

被折叠的 条评论
为什么被折叠?



