Go Range Loop Internals

本文深入探讨了Go语言中Range循环的工作原理,解释了循环变量的重用、范围表达式的评估方式,以及在迭代过程中对数组、切片、映射和通道的影响。文章通过源代码分析,揭示了Range循环实际上是对C风格循环的语法糖封装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文在这里

Go Range Loop Internals

While they are very convenient, I always found Go's range loops a bit mystifying. I'm not alone in this:

 

Now I could take these facts and try to remember them but it is likely I will forget. To have a better chance of remembering this I'll need to find out why the range loop behaves the way it does. So here goes.

Step 1: RTFM

The first order of business is to go read the range loop documentation. The Go language spec documents range loops in the for statement section under "For statements with range clause". I will not copy the entire spec here, but let me summarise some of the interesting bits.

First, let's remind ourselves what we're looking at here:

for i := range a {
    fmt.Println(i)
}

The range variables

Most of you will know that to the left of the range clause (i in the example above) you can assign the loop variables using:

  • assigment (=)
  • short variable declaration (:=)

You can also choose to put nothing to ignore the loop variables altogether.

If you use the short variable declaration style assignment (:=), Go will reuse the variables for each iteration of the loop (only in scope inside the loop).

The range expression

On the right side of the range clause (a in the example above) you find what they call the range expression. It can hold any expression that evaluates to one of the following:

  • array
  • pointer to an array
  • slice
  • string
  • map
  • channels that allow receiving, e.g. chan int or chan<- int

The range expression is evaluated once before beginning the loop. Note that there is an exception to this rule: if you range over an array (or pointer to) and you only assign the index: then only len(a) is evaluated. Evaluating just len(a) means that the expression a may be evaluated at compile time and replaced with a constant by the compiler. The spec for the len function explains:

The expressions len(s) and cap(s) are constants if the type of s is an array or pointer to an array and the expression s does not contain channel receives or (non-constant) function calls; in this case s is not evaluated. Otherwise, invocations of len and cap are not constant and s is evaluated.

Now what exactly does "evaluated" mean? Unfortunatly I can't find this information in the spec. Of course I can guess that it means to execute the expression completely until it can not be reduced further. In any case, the high order bit here is that the range expression is evaluated once before the beginning of the loop. How would you evaluate an expression just once? By assigning it to a variable! Could that be what is happening here?

Interestingly the spec mentions something specific about adding and removing to/from maps (no mention of slices):

If map entries that have not yet been reached are removed during iteration, the corresponding iteration values will not be produced. If map entries are created during iteration, that entry may be produced during the iteration or may be skipped.

I will come back to maps later.

Step 2: Data types supported by range

If we assume for a minute that the range expression gets assigned to a variable once before the start of the loop, what does that mean? The answer is that it depends on the data type, so let's have a closer look at the data types supported by range.

Before we do that, do remember this: in Go, everything you assign, you copy. If you assign a pointer, you copy the pointer. If you assign a struct, you copy the struct. The same is true when passing arguments to a function. Anyway, here goes:

typesyntactic sugar for
arraythe array
stringstruct holding len + a pointer to the backing array
slicestruct holding len, cap + a pointer to the backing array
mappointer to a struct
channelpointer to a struct

See the references at the bottom of this post to learn more about the internal structure of these data types.

So what does this mean? These examples highlight some of the differences:

// copies the entire array
var a [10]int
acopy := a 

// copies the slice header struct only, NOT the backing array
s := make([]int, 10)
scopy := s

// copies the map pointer only
m := make(map[string]int)
mcopy := m

So if at the beginning of a range loop you would assign an array expression to a variable (to ensure it evaluates only once), you would be copying the entire array. We might be onto something here.

Step 3: Go compiler source code

Lazy as I am I simply Googled for the Go compiler source. The first thing I found was the GCC version of the compiler. The interesting bits, as far as the range clause is concerned, are in statements.cc, as in this comment:

// Arrange to do a loop appropriate for the type.  We will produce
//   for INIT ; COND ; POST {
//           ITER_INIT
//           INDEX = INDEX_TEMP
//           VALUE = VALUE_TEMP // If there is a value
//           original statements
//   }

Now we're getting somewhere. Not entirely unsurprising, range loops are just syntactic sugar for C-style loops internally. The code has specific "desugarings" for earch type supported by range. For example, arrays:

// The loop we generate:
//   len_temp := len(range)
//   range_temp := range
//   for index_temp = 0; index_temp < len_temp; index_temp++ {
//           value_temp = range_temp[index_temp]
//           index = index_temp
//           value = value_temp
//           original body
//   }

Slices:

//   for_temp := range
//   len_temp := len(for_temp)
//   for index_temp = 0; index_temp < len_temp; index_temp++ {
//           value_temp = for_temp[index_temp]
//           index = index_temp
//           value = value_temp
//           original body
//   }

The common theme here is that

  • Everything is just a C-style for loop
  • The thing you iterate over is assigned to a temporary variable

That said, this was in the GCC frontend. Most people I know use the gc compiler that comes with the Go distribution. It looks like that compiler does pretty much the same thing.

What we know

  1. Loop variables are reused and assigned to at each iteration.
  2. The range expression gets evaluated once before the loop starts by assigning to a variable.
  3. You can delete or add values to a map while iterating. Adds may or may not be visible in the loop.

With this in hand, let's go back to the examples listed at the beginning of this post

Dave's tweet

The reason this terminates is because it roughly translates to something like this:

for_temp := v
len_temp := len(for_temp)
for index_temp = 0; index_temp < len_temp; index_temp++ {
        value_temp = for_temp[index_temp]
        index = index_temp
        value = value_temp
        v = append(v, index)
}

We know slices are syntactic sugar for a struct holding a pointer to the backing array. The loop is iterating over for_temp, which is a copy of that struct taken before the start of the loop. Any changes the variable v itself are thus not relevant as it is another copy of the struct. The backing array is still shared as it is just a pointer in that struct, so things like v[i] = 1 would work.

Damian's tweet

 

Again, similar to the case above, the array gets assigned to a temporary variable before the loop starts, which in the case of an array means taking a copy of the entire array. The reason it works with a pointer is that in that case the pointer will be copied, not the array.

Extra: maps

In the spec we read that

  • it is safe to add to and remove from maps in a range loop
  • if you add an element it may or may not see it in an upcoming iteration

Why does it work like that? For one, we know that maps are pointers to a struct. Before the loop starts, the pointer will be copied and not the internal data structure, hence why it is possible to add or remove keys inside the loop. This makes sense!

So why might you not see the element you added in an upcoming iteration? Well if you know about how hash tables work, which is what a map really is, then you'll know that inside the backing array for a hash table the items are in no particular order. The item you add last might hash to index zero in the backing array. So if you assume that Go reserves the right to iterate over this array in any order, it is indeed impossible to predict whether or not you will see the item you added inside the loop. After all, you might already be past index zero in the backing array. This might not be exactly what happens in the case of the Go map, but it makes sense to leave the decision to the compiler writer for this reason.

References

  1. The Go Programming Language Specification
  2. Go slices: usage and internals
  3. Go Data Structures
  4. Inside the map implementation: slides | video
  5. Understanding nil: slides | video
  6. string source code
  7. slice source code
  8. map source code
  9. channel source code
基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值