Codeforces Gym-101116-F (Flight Plan)【三角函数】

本文介绍了一种计算地球表面上两点间距离的方法,通过转换经纬度坐标到直角坐标,利用球面三角公式计算两点间的球面距离及沿纬线和经线的路径长度。

原文地址

题目大意:
假设地球是一个球体,给出起点的经纬度A(x1,y1),A(x1,y1), 终点的经纬度B(x2,y2)B(x2,y2)。 
x:x: 纬度,北纬为正,南纬为负; 
y:y: 经度,东经为正,西经为负。 
令: 
D1D1为两点的距离; 
D2D2为起点AA先沿着纬线,再沿着经线 走到终点BB的距离。 
求D1,D2求D1,D2。

数据范围:
1≤T≤100001≤T≤10000 
|x1|,|x2|≤90,|y1|,|y2|≤180|x1|,|x2|≤90,|y1|,|y2|≤180
解题思路:
这道题不重要,重要的是怎么求地球上两点的距离。 

图的话,将就看这个吧!懒得画了,,,只看图就好,,, 
 

球面坐标和直角坐标存在一一对应的关系:球面有一点M(r,φ,θ)M(r,φ,θ), 
 
则,点MM的直角坐标和球面坐标的关系为: 
⎧⎩⎨x=rcosφcosθy=rcosφsinθz=rsinφ
{x=rcos⁡φcos⁡θy=rcos⁡φsin⁡θz=rsin⁡φ

设A(r,α,β),B(r,φ,θ)设A(r,α,β),B(r,φ,θ), 
则有OA→=(rcosαcosβ,rcosαsinβ,rsinα),OB→=(rcosφcosθ,rcosφsinθ,rsinφ)则有OA→=(rcos⁡αcos⁡β,rcos⁡αsin⁡β,rsin⁡α),OB→=(rcos⁡φcos⁡θ,rcos⁡φsin⁡θ,rsin⁡φ) 
由此可得,夹角ang=arccos(OA→⋅OB→|OA→|⋅|OB→|)ang=arccos⁡(OA→⋅OB→|OA→|⋅|OB→|) 

化简得:ang=arccos(cosαcosφcos(β−θ)+sinαsinφ)ang=arccos⁡(cos⁡αcos⁡φcos⁡(β−θ)+sin⁡αsin⁡φ) 
夹角出来了,距离就好办了。 
 

 

 

距离的问题解决了,其他都不重要了。不对,这道题还没完呢!,,, 
有一个坑点:当一个点在东半球,另一个在西半球时,需要特别注意一下角度,稍微想想。 

 

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 1000000000;
const int maxn = 100;
const double R=6371.0;
int main()
{
	int t;
	double dd;
	double wa,wb,ja,jb;

	cin>>t;
	while(t--)
	{
		scanf("%lf%lf%lf%lf",&wa,&ja,&wb,&jb);

		if(abs(ja-jb)>180.0)
		{
			if(ja<0.0)
				ja+=360.0;
			else if(jb<0.0)
				jb+=360.0;
		}


		dd=R*acos(sin(wa/180.0*PI)*sin(wb/180.0*PI)+cos(wa/180.0*PI)*cos(wb/180.0*PI)*cos((ja-jb)/180.0*PI));
		printf("%.10lf ",dd);
		double wc=wa;
		double jc=jb;
		double d1=R*acos(sin(wb/180.0*PI)*sin(wc/180.0*PI)+cos(wb/180.0*PI)*cos(wc/180.0*PI)*cos((jb-jc)/180.0*PI));
		double r=R*cos(wa/180.0*PI);
		double d2=(abs(ja-jc)/180.0*PI)*r;
		printf("%.10lf\n",d1+d2);
	}
	return 0;
}

 

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
### Codeforces Problem 976C Solution in Python For solving problem 976C on Codeforces using Python, efficiency becomes a critical factor due to strict time limits aimed at distinguishing between efficient and less efficient solutions[^1]. Given these constraints, it is advisable to focus on optimizing algorithms and choosing appropriate data structures. The provided code snippet offers insight into handling string manipulation problems efficiently by customizing comparison logic for sorting elements based on specific criteria[^2]. However, for addressing problem 976C specifically, which involves determining the winner ('A' or 'B') based on frequency counts within given inputs, one can adapt similar principles of optimization but tailored towards counting occurrences directly as shown below: ```python from collections import Counter def determine_winner(): for _ in range(int(input())): count_map = Counter(input().strip()) result = "A" if count_map['A'] > count_map['B'] else "B" print(result) determine_winner() ``` This approach leverages `Counter` from Python’s built-in `collections` module to quickly tally up instances of 'A' versus 'B'. By iterating over multiple test cases through a loop defined by user input, this method ensures that comparisons are made accurately while maintaining performance standards required under tight computational resources[^3]. To further enhance execution speed when working with Python, consider submitting codes via platforms like PyPy instead of traditional interpreters whenever possible since they offer better runtime efficiencies especially important during competitive programming contests where milliseconds matter significantly.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值