keras_自定义步长

## import libraries
import numpy as np
np.random.seed(123)
import pandas as pd
import subprocess
from scipy.sparse import csr_matrix, hstack
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import KFold
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import PReLU


## Batch generators ##################################################################################################################################

def batch_generator(X, y, batch_size, shuffle):
    # chenglong code for fiting from generator (https://www.kaggle.com/c/talkingdata-mobile-user-demographics/forums/t/22567/neural-network-for-sparse-matrices)
    number_of_batches = np.ceil(X.shape[0] / batch_size)
    counter = 0
    sample_index = np.arange(X.shape[0])
    if shuffle:
        np.random.shuffle(sample_index)
    while True:
        batch_index = sample_index[batch_size * counter:batch_size * (counter + 1)]
        X_batch = X[batch_index, :].toarray()
        y_batch = y[batch_index]
        counter += 1
        yield X_batch, y_batch
        if (counter == number_of_batches):
            if shuffle:
                np.random.shuffle(sample_index)
            counter = 0


def batch_generatorp(X, batch_size, shuffle):
    number_of_batches = X.shape[0] / np.ceil(X.shape[0] / batch_size)
    counter = 0
    sample_index = np.arange(X.shape[0])
    while True:
        batch_index = sample_index[batch_size * counter:batch_size * (counter + 1)]
        X_batch = X[batch_index, :].toarray()
        counter += 1
        yield X_batch
        if (counter == number_of_batches):
            counter = 0


########################################################################################################################################################

## read data
train = pd.read_csv('e:/otto.csv')
test = pd.read_csv('e:/titanic_test.csv')

index = list(train.index)
print (index[0:10])
np.random.shuffle(index)
print (index[0:10])
train = train.iloc[index]
'train = train.iloc[np.random.permutation(len(train))]'

## set test loss to NaN
test['loss'] = np.nan

## response and IDs
y = np.log(train['loss'].values + 200)
id_train = train['id'].values
id_test = test['id'].values

## stack train test
ntrain = train.shape[0]
tr_te = pd.concat((train, test), axis=0)

## Preprocessing and transforming to sparse data
sparse_data = []

f_cat = [f for f in tr_te.columns if 'cat' in f]
for f in f_cat:
    dummy = pd.get_dummies(tr_te[f].astype('category'))
    tmp = csr_matrix(dummy)
    sparse_data.append(tmp)

f_num = [f for f in tr_te.columns if 'cont' in f]
scaler = StandardScaler()
tmp = csr_matrix(scaler.fit_transform(tr_te[f_num]))
sparse_data.append(tmp)

del (tr_te, train, test)

## sparse train and test data
xtr_te = hstack(sparse_data, format='csr')
xtrain = xtr_te[:ntrain, :]
xtest = xtr_te[ntrain:, :]

print('Dim train', xtrain.shape)
print('Dim test', xtest.shape)

del (xtr_te, sparse_data, tmp)


## neural net
def nn_model():
    model = Sequential()

    model.add(Dense(400, input_dim=xtrain.shape[1], init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Dense(200, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(50, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(1, init='he_normal'))
    model.compile(loss='mae', optimizer='adadelta')
    return (model)


## cv-folds
nfolds = 10
folds = KFold(len(y), n_folds=nfolds, shuffle=True, random_state=111)

## train models
i = 0
nbags = 10
nepochs = 55
pred_oob = np.zeros(xtrain.shape[0])
pred_test = np.zeros(xtest.shape[0])

for (inTr, inTe) in folds:
    xtr = xtrain[inTr]
    ytr = y[inTr]
    xte = xtrain[inTe]
    yte = y[inTe]
    pred = np.zeros(xte.shape[0])
    for j in range(nbags):
        model = nn_model()
        fit = model.fit_generator(generator=batch_generator(xtr, ytr, 128, True),
                                  nb_epoch=nepochs,
                                  samples_per_epoch=xtr.shape[0],
                                  verbose=0)
        pred += np.exp(
            model.predict_generator(generator=batch_generatorp(xte, 800, False), val_samples=xte.shape[0])[:, 0]) - 200
        pred_test += np.exp(
            model.predict_generator(generator=batch_generatorp(xtest, 800, False), val_samples=xtest.shape[0])[:,
            0]) - 200
    pred /= nbags
    pred_oob[inTe] = pred
    score = mean_absolute_error(np.exp(yte) - 200, pred)
    i += 1
    print('Fold ', i, '- MAE:', score)

print('Total - MAE:', mean_absolute_error(np.exp(y) - 200, pred_oob))

## train predictions
df = pd.DataFrame({'id': id_train, 'loss': pred_oob})
df.to_csv('e:/preds_oob.csv', index=False)

## test predictions
pred_test /= (nfolds * nbags)
df = pd.DataFrame({'id': id_test, 'loss': pred_test})
df.to_csv('submission_keras_shift_perm.csv', index=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值