根据人脸预测年龄性别和情绪 (python + keras)(三)

本文介绍了一种结合OpenCV和Keras的情感与年龄性别识别系统,通过视频流实时检测人脸,预测情绪状态及年龄性别,实现了人机交互、智能控制等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸面部情绪识别 (一)

人脸面部情绪识别(二)

人脸面部情绪识别 age&gender(三)

根据人脸预测年龄性别和情绪代码实现 (c++ + caffe)(四)

* 背景 *

1、 目前人脸识别已经广泛运用,即使在视频流里面也能流畅识别出来,无论是对安防还是其他体验类产品都有很大的影响。研究完人脸识别后,对于年龄的预测,性别的判断以及根据面部动作识别表情也开始实现,以后可能还会学习颜值预测和是否带眼睛戴帽子什么的。面部表情识别技术主要的应用领域包括人机交互、智能控制、安全、医疗、通信等领域。颜值预测可以运用于未来的虚拟化妆,客户可以看见化妆后的自己,满意后再实际化妆出来的效果最能让客户开心。

实现

  • 在哪里实现?

第一,在视频流里实时识别,人脸识别的人脸对齐过程实现,人脸检测完之后将检测结果传参给预测模型。

第二、直接给图片先检测再预测

  • 代码实现
    demo.py

  • import os
    import cv2
    import time
    import numpy as np
    import argparse
    import dlib
    from contextlib import contextmanager
    from wide_resnet import WideResNet
    from keras.utils.data_utils import get_file
    from keras.models import model_from_json
    
    pretrained_model = "https://github.com/yu4u/age-gender-estimation/releases/download/v0.5/weights.18-4.06.hdf5"
    modhash = '89f56a39a78454e96379348bddd78c0d'
    
    emotion_labels = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral']
    
    # load json and create model arch 
    json_file = open('model.json','r')
    loaded_model_json = json_file.read()
    json_file.close()
    #将json重构为model结构
    model = model_from_json(loaded_model_json)
    
    # load weights into new model
    model.load_weights('model.h5')
    
    def predict_emotion(face_image_gray): # a single cropped face
        resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA)
    
        image = resized_img.reshape(1, 1, 48, 48)
        im = cv2.resize(resized_img,(90,100))
        cv2.imwrite('face.bmp', im)
        list_of_list = model.predict(image, batch_size=1, verbose=1)
        angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst]
        return [angry, fear, happy, sad, surprise, neutral]
    
    
    def get_args():
        parser = argparse.ArgumentParser(description="This script detects faces from web cam input, "
                                                     "and estimates age and gender for the detected faces.",
                                         formatter_class=argparse.ArgumentDefaultsHelpFormatter)
        #改成自己的地址                                 
        parser.add_argument("--weight_file", type=str, default="./pretrained_models/weights.18-4.06.hdf5",
                            help="path to weight file (e.g. weights.18-4.06.hdf5)")
        parser.add_argument("--depth", type=int, default=16,
                            help="depth of network")
        parser.add_argument("--width", type=int, default=8,
                            help="width of network")
        args = parser.parse_args()
        return args
    
    
    def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX,
                   font_scale=1, thickness=2):
        size = cv2.getTextSize(label, font, font_scale, thickness)[0]
        x, y = point
        cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED)
        cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness)
    
    
    @contextmanager
    def video_capture(*args, **kwargs):
        cap = cv2.VideoCapture(*args, **kwargs)
        try:
            yield cap
        finally:
            cap.release()
    
    
    def yield_images():
        # capture video
        with video_capture(0) as cap:
            cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
            cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
    
            while True:
                # get video frame
                ret, img = cap.read()
    
                if not ret:
                    raise RuntimeError("Failed to capture image")
    
                yield img
    
    
    def main():
        biaoqing = ""
        args = get_args()
        depth = args.depth
        k = args.width
        weight_file = args.weight_file
        print(weight_file)
        #第一次运行时会自动从给的网址下载weights.18-4.06.hdf5模型(190M左右)
        if not weight_file:
            weight_file = get_file("weights.18-4.06.hdf5", pretrained_model, cache_subdir="pretrained_models",
                                   file_hash=modhash, cache_dir=os.path.dirname(os.path.abspath(__file__)))
    
        # for face detection
        detector = dlib.get_frontal_face_detector()
    
        # load model and weights
        img_size = 64
        model = WideResNet(img_size, depth=depth, k=k)()
        model.load_weights(weight_file)
    
    
        for img in yield_images():
            #img = cv2.imread("1.jpg")
            input_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            img_h, img_w, _ = np.shape(input_img)
            #print("h w ",img_h,img_w)
    
            emotions = []
            # Draw a rectangle around the faces
    
    
            # detect faces using dlib detector
            detected = detector(img_gray, 0)
            faces = np.empty((len(detected), img_size, img_size, 3))
            #print("dector",detected)
    
            if len(detected) > 0:
                for i, d in enumerate(detected):
                    #print("i,d =",i,d)
                    x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height()
                    #print("w h =",w,h)
                    xw1 = max(int(x1 - 0.4 * w), 0)
                    yw1 = max(int(y1 - 0.4 * h), 0)
                    xw2 = min(int(x2 + 0.4 * w), img_w - 1)
                    yw2 = min(int(y2 + 0.4 * h), img_h - 1)
                    cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
                    #cv2.rectangle(img, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
                    faces[i, :, :, :] = cv2.resize(img[yw1:yw2 + 1, xw1:xw2 + 1, :], (img_size, img_size))
                    #print("faces  ",faces)
                    face_image_gray = img_gray[y1:y1 + y2, x1:x1 + x2]
                    angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray)
                    emotions = [angry, fear, happy, sad, surprise, neutral]
                    m = emotions.index(max(emotions))
    
                    for index, val in enumerate(emotion_labels):
                        if (m == index):
                            biaoqing = val
    
                # predict ages and genders of the detected faces
                results = model.predict(faces)
                predicted_genders = results[0]
                ages = np.arange(0, 101).reshape(101, 1)
                predicted_ages = results[1].dot(ages).flatten()
    
                # draw results
                for i, d in enumerate(detected):
                    #print("表情",biaoqing)
                    label = "{}, {},{}".format(int(predicted_ages[i]),
                                            "F" if predicted_genders[i][0] > 0.5 else "M" ,biaoqing)
                    draw_label(img, (d.left(), d.top()), label)
    
            cv2.imshow("result", img)
            #等待3ms
            key = cv2.waitKey(3)
    
            if key == 27:
                break
    
    
    if __name__ == '__main__':
        main()
    
     
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168

    wide_resnet.py

    # This code is imported from the following project: https://github.com/asmith26/wide_resnets_keras
    
    import logging
    import sys
    import numpy as np
    from keras.models import Model
    from keras.layers import Input, Activation, add, Dense, Flatten, Dropout
    from keras.layers.convolutional import Conv2D, AveragePooling2D
    from keras.layers.normalization import BatchNormalization
    from keras.regularizers import l2
    from keras import backend as K
    
    sys.setrecursionlimit(2 ** 20)
    np.random.seed(2 ** 10)
    
    
    class WideResNet:
        def __init__(self, image_size, depth=16, k=8):
            self._depth = depth
            self._k = k
            self._dropout_probability = 0
            self._weight_decay = 0.0005
            self._use_bias = False
            self._weight_init = "he_normal"
    
            if K.image_dim_ordering() == "th":
                logging.debug("image_dim_ordering = 'th'")
                self._channel_axis = 1
                self._input_shape = (3, image_size, image_size)
            else:
                logging.debug("image_dim_ordering = 'tf'")
                self._channel_axis = -1
                self._input_shape = (image_size, image_size, 3)
    
        # Wide residual network http://arxiv.org/abs/1605.07146
        def _wide_basic(self, n_input_plane, n_output_plane, stride):
            def f(net):
                # format of conv_params:
                #               [ [kernel_size=("kernel width", "kernel height"),
                #               strides="(stride_vertical,stride_horizontal)",
                #               padding="same" or "valid"] ]
                # B(3,3): orignal <<basic>> block
                conv_params = [[3, 3, stride, "same"],
                               [3, 3, (1, 1), "same"]]
    
                n_bottleneck_plane = n_output_plane
    
                # Residual block
                for i, v in enumerate(conv_params):
                    if i == 0:
                        if n_input_plane != n_output_plane:
                            net = BatchNormalization(axis=self._channel_axis)(net)
                            net = Activation("relu")(net)
                            convs = net
                        else:
                            convs = BatchNormalization(axis=self._channel_axis)(net)
                            convs = Activation("relu")(convs)
    
                        convs = Conv2D(n_bottleneck_plane, kernel_size=(v[0], v[1]),
                                              strides=v[2],
                                              padding=v[3],
                                              kernel_initializer=self._weight_init,
                                              kernel_regularizer=l2(self._weight_decay),
                                              use_bias=self._use_bias)(convs)
                    else:
                        convs = BatchNormalization(axis=self._channel_axis)(convs)
                        convs = Activation("relu")(convs)
                        if self._dropout_probability > 0:
                            convs = Dropout(self._dropout_probability)(convs)
                        convs = Conv2D(n_bottleneck_plane, kernel_size=(v[0], v[1]),
                                              strides=v[2],
                                              padding=v[3],
                                              kernel_initializer=self._weight_init,
                                              kernel_regularizer=l2(self._weight_decay),
                                              use_bias=self._use_bias)(convs)
    
                # Shortcut Connection: identity function or 1x1 convolutional
                #  (depends on difference between input & output shape - this
                #   corresponds to whether we are using the first block in each
                #   group; see _layer() ).
                if n_input_plane != n_output_plane:
                    shortcut = Conv2D(n_output_plane, kernel_size=(1, 1),
                                             strides=stride,
                                             padding="same",
                                             kernel_initializer=self._weight_init,
                                             kernel_regularizer=l2(self._weight_decay),
                                             use_bias=self._use_bias)(net)
                else:
                    shortcut = net
    
                return add([convs, shortcut])
    
            return f
    
    
        # "Stacking Residual Units on the same stage"
        def _layer(self, block, n_input_plane, n_output_plane, count, stride):
            def f(net):
                net = block(n_input_plane, n_output_plane, stride)(net)
                for i in range(2, int(count + 1)):
                    net = block(n_output_plane, n_output_plane, stride=(1, 1))(net)
                return net
    
            return f
    
    #    def create_model(self):
        def __call__(self):
            logging.debug("Creating model...")
    
            assert ((self._depth - 4) % 6 == 0)
            n = (self._depth - 4) / 6
    
            inputs = Input(shape=self._input_shape)
    
            n_stages = [16, 16 * self._k, 32 * self._k, 64 * self._k]
    
            conv1 = Conv2D(filters=n_stages[0], kernel_size=(3, 3),
                                  strides=(1, 1),
                                  padding="same",
                                  kernel_initializer=self._weight_init,
                                  kernel_regularizer=l2(self._weight_decay),
                                  use_bias=self._use_bias)(inputs)  # "One conv at the beginning (spatial size: 32x32)"
    
            # Add wide residual blocks
            block_fn = self._wide_basic
            conv2 = self._layer(block_fn, n_input_plane=n_stages[0], n_output_plane=n_stages[1], count=n, stride=(1, 1))(conv1)
            conv3 = self._layer(block_fn, n_input_plane=n_stages[1], n_output_plane=n_stages[2], count=n, stride=(2, 2))(conv2)
            conv4 = self._layer(block_fn, n_input_plane=n_stages[2], n_output_plane=n_stages[3], count=n, stride=(2, 2))(conv3)
            batch_norm = BatchNormalization(axis=self._channel_axis)(conv4)
            relu = Activation("relu")(batch_norm)
    
            # Classifier block
            pool = AveragePooling2D(pool_size=(8, 8), strides=(1, 1), padding="same")(relu)
            flatten = Flatten()(pool)
            predictions_g = Dense(units=2, kernel_initializer=self._weight_init, use_bias=self._use_bias,
                                  kernel_regularizer=l2(self._weight_decay), activation="softmax",
                                  name="pred_gender")(flatten)
            predictions_a = Dense(units=101, kernel_initializer=self._weight_init, use_bias=self._use_bias,
                                  kernel_regularizer=l2(self._weight_decay), activation="softmax",
                                  name="pred_age")(flatten)
            model = Model(inputs=inputs, outputs=[predictions_g, predictions_a])
    
            return model
    
    
    def main():
        model = WideResNet(64)()
        model.summary()
    
    
    if __name__ == '__main__':
        main()
    
     
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153

    准备工作

     环境:python3  TensorFlow-gpu  numpy  keras  dlib
     模型:model.h5(表情预测模型)  model.json(表情预测模型的json类型)  weights.18-4.06.hdf5(性别年龄预测模型)
    [模型下载](https://download.youkuaiyun.com/download/hpymiss/10490349)
    
     
    • 1
    • 2
    • 3

    运行

    python demo.py
    
     
    • 1

    效果

    这里写图片描述

    处理一帧一秒以内,视频流里能流畅运行
    不足之处:模型的精度还不够,需要进行微调,如何改进还待研究

    硬件

    • GPU:
      name: GeForce GTX 960M major: 5 minor: 0 memoryClockRate(GHz): 1.176
      pciBusID: 0000:02:00.0
      totalMemory: 4.00GiB freeMemory: 3.34GiB
    • 处理器 (i7)

    学习参考
    keras官方文档
    参考代码以及model.h5下载
    年龄性别预测
    彻底理解Python中的yield
    Keras 实现的性别年龄检测 (已并入颜值服务)
    keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值