人脸面部情绪识别 (一)
人脸面部情绪识别(二)
人脸面部情绪识别 age&gender(三)
根据人脸预测年龄性别和情绪代码实现 (c++ + caffe)(四)
* 背景 *
1、 目前人脸识别已经广泛运用,即使在视频流里面也能流畅识别出来,无论是对安防还是其他体验类产品都有很大的影响。研究完人脸识别后,对于年龄的预测,性别的判断以及根据面部动作识别表情也开始实现,以后可能还会学习颜值预测和是否带眼睛戴帽子什么的。面部表情识别技术主要的应用领域包括人机交互、智能控制、安全、医疗、通信等领域。颜值预测可以运用于未来的虚拟化妆,客户可以看见化妆后的自己,满意后再实际化妆出来的效果最能让客户开心。
实现
在哪里实现?
第一,在视频流里实时识别,人脸识别的人脸对齐过程实现,人脸检测完之后将检测结果传参给预测模型。
第二、直接给图片先检测再预测
代码实现
demo.pyimport os import cv2 import time import numpy as np import argparse import dlib from contextlib import contextmanager from wide_resnet import WideResNet from keras.utils.data_utils import get_file from keras.models import model_from_json pretrained_model = "https://github.com/yu4u/age-gender-estimation/releases/download/v0.5/weights.18-4.06.hdf5" modhash = '89f56a39a78454e96379348bddd78c0d' emotion_labels = ['angry', 'fear', 'happy', 'sad', 'surprise', 'neutral'] # load json and create model arch json_file = open('model.json','r') loaded_model_json = json_file.read() json_file.close() #将json重构为model结构 model = model_from_json(loaded_model_json) # load weights into new model model.load_weights('model.h5') def predict_emotion(face_image_gray): # a single cropped face resized_img = cv2.resize(face_image_gray, (48,48), interpolation = cv2.INTER_AREA) image = resized_img.reshape(1, 1, 48, 48) im = cv2.resize(resized_img,(90,100)) cv2.imwrite('face.bmp', im) list_of_list = model.predict(image, batch_size=1, verbose=1) angry, fear, happy, sad, surprise, neutral = [prob for lst in list_of_list for prob in lst] return [angry, fear, happy, sad, surprise, neutral] def get_args(): parser = argparse.ArgumentParser(description="This script detects faces from web cam input, " "and estimates age and gender for the detected faces.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) #改成自己的地址 parser.add_argument("--weight_file", type=str, default="./pretrained_models/weights.18-4.06.hdf5", help="path to weight file (e.g. weights.18-4.06.hdf5)") parser.add_argument("--depth", type=int, default=16, help="depth of network") parser.add_argument("--width", type=int, default=8, help="width of network") args = parser.parse_args() return args def draw_label(image, point, label, font=cv2.FONT_HERSHEY_SIMPLEX, font_scale=1, thickness=2): size = cv2.getTextSize(label, font, font_scale, thickness)[0] x, y = point cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0), cv2.FILLED) cv2.putText(image, label, point, font, font_scale, (255, 255, 255), thickness) @contextmanager def video_capture(*args, **kwargs): cap = cv2.VideoCapture(*args, **kwargs) try: yield cap finally: cap.release() def yield_images(): # capture video with video_capture(0) as cap: cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) while True: # get video frame ret, img = cap.read() if not ret: raise RuntimeError("Failed to capture image") yield img def main(): biaoqing = "" args = get_args() depth = args.depth k = args.width weight_file = args.weight_file print(weight_file) #第一次运行时会自动从给的网址下载weights.18-4.06.hdf5模型(190M左右) if not weight_file: weight_file = get_file("weights.18-4.06.hdf5", pretrained_model, cache_subdir="pretrained_models", file_hash=modhash, cache_dir=os.path.dirname(os.path.abspath(__file__))) # for face detection detector = dlib.get_frontal_face_detector() # load model and weights img_size = 64 model = WideResNet(img_size, depth=depth, k=k)() model.load_weights(weight_file) for img in yield_images(): #img = cv2.imread("1.jpg") input_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_h, img_w, _ = np.shape(input_img) #print("h w ",img_h,img_w) emotions = [] # Draw a rectangle around the faces # detect faces using dlib detector detected = detector(img_gray, 0) faces = np.empty((len(detected), img_size, img_size, 3)) #print("dector",detected) if len(detected) > 0: for i, d in enumerate(detected): #print("i,d =",i,d) x1, y1, x2, y2, w, h = d.left(), d.top(), d.right() + 1, d.bottom() + 1, d.width(), d.height() #print("w h =",w,h) xw1 = max(int(x1 - 0.4 * w), 0) yw1 = max(int(y1 - 0.4 * h), 0) xw2 = min(int(x2 + 0.4 * w), img_w - 1) yw2 = min(int(y2 + 0.4 * h), img_h - 1) cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2) #cv2.rectangle(img, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2) faces[i, :, :, :] = cv2.resize(img[yw1:yw2 + 1, xw1:xw2 + 1, :], (img_size, img_size)) #print("faces ",faces) face_image_gray = img_gray[y1:y1 + y2, x1:x1 + x2] angry, fear, happy, sad, surprise, neutral = predict_emotion(face_image_gray) emotions = [angry, fear, happy, sad, surprise, neutral] m = emotions.index(max(emotions)) for index, val in enumerate(emotion_labels): if (m == index): biaoqing = val # predict ages and genders of the detected faces results = model.predict(faces) predicted_genders = results[0] ages = np.arange(0, 101).reshape(101, 1) predicted_ages = results[1].dot(ages).flatten() # draw results for i, d in enumerate(detected): #print("表情",biaoqing) label = "{}, {},{}".format(int(predicted_ages[i]), "F" if predicted_genders[i][0] > 0.5 else "M" ,biaoqing) draw_label(img, (d.left(), d.top()), label) cv2.imshow("result", img) #等待3ms key = cv2.waitKey(3) if key == 27: break if __name__ == '__main__': main()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
wide_resnet.py
# This code is imported from the following project: https://github.com/asmith26/wide_resnets_keras import logging import sys import numpy as np from keras.models import Model from keras.layers import Input, Activation, add, Dense, Flatten, Dropout from keras.layers.convolutional import Conv2D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 from keras import backend as K sys.setrecursionlimit(2 ** 20) np.random.seed(2 ** 10) class WideResNet: def __init__(self, image_size, depth=16, k=8): self._depth = depth self._k = k self._dropout_probability = 0 self._weight_decay = 0.0005 self._use_bias = False self._weight_init = "he_normal" if K.image_dim_ordering() == "th": logging.debug("image_dim_ordering = 'th'") self._channel_axis = 1 self._input_shape = (3, image_size, image_size) else: logging.debug("image_dim_ordering = 'tf'") self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) # Wide residual network http://arxiv.org/abs/1605.07146 def _wide_basic(self, n_input_plane, n_output_plane, stride): def f(net): # format of conv_params: # [ [kernel_size=("kernel width", "kernel height"), # strides="(stride_vertical,stride_horizontal)", # padding="same" or "valid"] ] # B(3,3): orignal <<basic>> block conv_params = [[3, 3, stride, "same"], [3, 3, (1, 1), "same"]] n_bottleneck_plane = n_output_plane # Residual block for i, v in enumerate(conv_params): if i == 0: if n_input_plane != n_output_plane: net = BatchNormalization(axis=self._channel_axis)(net) net = Activation("relu")(net) convs = net else: convs = BatchNormalization(axis=self._channel_axis)(net) convs = Activation("relu")(convs) convs = Conv2D(n_bottleneck_plane, kernel_size=(v[0], v[1]), strides=v[2], padding=v[3], kernel_initializer=self._weight_init, kernel_regularizer=l2(self._weight_decay), use_bias=self._use_bias)(convs) else: convs = BatchNormalization(axis=self._channel_axis)(convs) convs = Activation("relu")(convs) if self._dropout_probability > 0: convs = Dropout(self._dropout_probability)(convs) convs = Conv2D(n_bottleneck_plane, kernel_size=(v[0], v[1]), strides=v[2], padding=v[3], kernel_initializer=self._weight_init, kernel_regularizer=l2(self._weight_decay), use_bias=self._use_bias)(convs) # Shortcut Connection: identity function or 1x1 convolutional # (depends on difference between input & output shape - this # corresponds to whether we are using the first block in each # group; see _layer() ). if n_input_plane != n_output_plane: shortcut = Conv2D(n_output_plane, kernel_size=(1, 1), strides=stride, padding="same", kernel_initializer=self._weight_init, kernel_regularizer=l2(self._weight_decay), use_bias=self._use_bias)(net) else: shortcut = net return add([convs, shortcut]) return f # "Stacking Residual Units on the same stage" def _layer(self, block, n_input_plane, n_output_plane, count, stride): def f(net): net = block(n_input_plane, n_output_plane, stride)(net) for i in range(2, int(count + 1)): net = block(n_output_plane, n_output_plane, stride=(1, 1))(net) return net return f # def create_model(self): def __call__(self): logging.debug("Creating model...") assert ((self._depth - 4) % 6 == 0) n = (self._depth - 4) / 6 inputs = Input(shape=self._input_shape) n_stages = [16, 16 * self._k, 32 * self._k, 64 * self._k] conv1 = Conv2D(filters=n_stages[0], kernel_size=(3, 3), strides=(1, 1), padding="same", kernel_initializer=self._weight_init, kernel_regularizer=l2(self._weight_decay), use_bias=self._use_bias)(inputs) # "One conv at the beginning (spatial size: 32x32)" # Add wide residual blocks block_fn = self._wide_basic conv2 = self._layer(block_fn, n_input_plane=n_stages[0], n_output_plane=n_stages[1], count=n, stride=(1, 1))(conv1) conv3 = self._layer(block_fn, n_input_plane=n_stages[1], n_output_plane=n_stages[2], count=n, stride=(2, 2))(conv2) conv4 = self._layer(block_fn, n_input_plane=n_stages[2], n_output_plane=n_stages[3], count=n, stride=(2, 2))(conv3) batch_norm = BatchNormalization(axis=self._channel_axis)(conv4) relu = Activation("relu")(batch_norm) # Classifier block pool = AveragePooling2D(pool_size=(8, 8), strides=(1, 1), padding="same")(relu) flatten = Flatten()(pool) predictions_g = Dense(units=2, kernel_initializer=self._weight_init, use_bias=self._use_bias, kernel_regularizer=l2(self._weight_decay), activation="softmax", name="pred_gender")(flatten) predictions_a = Dense(units=101, kernel_initializer=self._weight_init, use_bias=self._use_bias, kernel_regularizer=l2(self._weight_decay), activation="softmax", name="pred_age")(flatten) model = Model(inputs=inputs, outputs=[predictions_g, predictions_a]) return model def main(): model = WideResNet(64)() model.summary() if __name__ == '__main__': main()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
准备工作
环境:python3 TensorFlow-gpu numpy keras dlib 模型:model.h5(表情预测模型) model.json(表情预测模型的json类型) weights.18-4.06.hdf5(性别年龄预测模型) [模型下载](https://download.youkuaiyun.com/download/hpymiss/10490349)
- 1
- 2
- 3
运行
python demo.py
- 1
效果
处理一帧一秒以内,视频流里能流畅运行
不足之处:模型的精度还不够,需要进行微调,如何改进还待研究硬件
- GPU:
name: GeForce GTX 960M major: 5 minor: 0 memoryClockRate(GHz): 1.176
pciBusID: 0000:02:00.0
totalMemory: 4.00GiB freeMemory: 3.34GiB - 处理器 (i7)
学习参考
keras官方文档
参考代码以及model.h5下载
年龄性别预测
彻底理解Python中的yield
Keras 实现的性别年龄检测 (已并入颜值服务)
keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)