简单线性回归及实现

本文介绍了统计学中的基本概念,包括均值、中位数、众数等集中趋势衡量指标,以及方差、标准差等离散程度衡量指标。此外,还详细讲解了简单线性回归的概念、原理及应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前提介绍:

为什么需要统计量?
     统计量:描述数据特征

0.1 集中趋势衡量

0.1.1均值(平均数,平均值)(mean)
这里写图片描述

graphic
{6, 2, 9, 1, 2}
(6 + 2 + 9 + 1 + 2) / 5 = 20 / 5 = 4

0.1.2中位数 (median): 将数据中的各个数值按照大小顺序排列,居于中间位置的变量

0.1.2.1. 给数据排序:1, 2, 2, 6, 9
0.1.2.2. 找出位置处于中间的变量:2
当n为基数的时候:直接取位置处于中间的变量
当n为偶数的时候,取中间两个量的平均值

0.1.3众数 (mode):数据中出现次数最多的数

0.2

0.2.1. 离散程度衡量

0.2.1.1方差(variance)
这里写图片描述

graphic

{6, 2, 9, 1, 2}

(1) (6 - 4)^2 + (2 - 4) ^2 + (9 - 4)^2 + (1 - 4)^2 + (2 - 4)^2
= 4 + 4 + 25 + 9 + 4
= 46

(2) n - 1 = 5 - 1 = 4

(3) 46 / 4 = 11.5

0.2.1.2标准差 (standard deviation)
这里写图片描述

graphic

s = sqrt(11.5) = 3.39

1. 介绍:回归(regression) Y变量为连续数值型(continuous numerical variable)

如:房价,人数,降雨量
分类(Classification): Y变量为类别型(categorical variable)
如:颜色类别,电脑品牌,有无信誉

2. 简单线性回归(Simple Linear Regression)

2.1 很多做决定过过程通常是根据两个或者多个变量之间的关系
2.3 回归分析(regression analysis)用来建立方程模拟两个或者多个变量之间如何关联
2.4 被预测的变量叫做:因变量(dependent variable), y, 输出(output)
2.5 被用来进行预测的变量叫做: 自变量(independent variable), x, 输入(input)

3. 简单线性回归介绍

3.1 简单线性回归包含一个自变量(x)和一个因变量(y)
3.2 以上两个变量的关系用一条直线来模拟
3.3 如果包含两个以上的自变量,则称作多元回归分析(multiple regression)

4. 简单线性回归模型

4.1 被用来描述因变量(y)和自变量(X)以及偏差(error)之间关系的方程叫做回归模型
4.2 简单线性回归的模型是:
这里写图片描述
其中:        参数               偏差
5. 简单线性回归方程
E(y) = β0+β1x
这个方程对应的图像是一条直线,称作回归线
其中,β0是回归线的截距
β1是回归线的斜率
E(y)是在一个给定x值下y的期望值(均值)

6.正向线性关系:

这里写图片描述
7.负向线性关系:
这里写图片描述
8.无关系:
这里写图片描述

9. 估计的简单线性回归方程
ŷ=b0+b1x
这个方程叫做估计线性方程(estimated regression line)
其中,b0是估计线性方程的纵截距
b1是估计线性方程的斜率
ŷ是在自变量x等于一个给定值的时候,y的估计值

10. 线性回归分析流程:
这里写图片描述

11. 关于偏差ε的假定
11.1 是一个随机的变量,均值为0
11.2 ε的方差(variance)对于所有的自变量x是一样的
11.3 ε的值是独立的
11.4 ε满足正态分布

12 简单线性回归模型举例:

汽车卖家做电视广告数量与卖出的汽车数量:
这里写图片描述
12.1 如何练处适合简单线性回归模型的最佳回归线?
这里写图片描述
这里写图片描述
使sum of squares最小

12.1.2 计算
这里写图片描述

分子 = (1-2)(14-20)+(3-2)(24-20)+(2-2)(18-20)+(1-2)(17-20)+(3-2)(27-20)
= 6 + 4 + 0 + 3 + 7
= 20

分母 = (1-2)^2 + (3-2)^2 + (2-2)^2 + (1-2)^2 + (3-2)^2
= 1 + 1 + 0 + 1 + 1
4

b1 = 20/4 =5

这里写图片描述

b0 = 20 - 5*2 = 20 - 10 = 10

这里写图片描述
12.2 预测:

假设有一周广告数量为6,预测的汽车销售量是多少?
这里写图片描述

# -*- encoding=utf-8 -*-
# 简单现行回归:只有一个自变量 y=k*x+b 预测使 (y-y*)^2  最小
import numpy as np


def fitSLR(x, y):
    n = len(x)
    dinominator = 0
    numerator = 0
    for i in range(0, n):
        numerator += (x[i] - np.mean(x)) * (y[i] - np.mean(y))
        dinominator += (x[i] - np.mean(x)) ** 2

    print("numerator:" + str(numerator))
    print("dinominator:" + str(dinominator))

    b1 = numerator / float(dinominator)
    b0 = np.mean(y) / float(np.mean(x))

    return b0, b1


# y= b0+x*b1
def prefict(x, b0, b1):
    return b0 + x * b1


x = [1, 3, 2, 1, 3]
y = [14, 24, 18, 17, 27]

b0, b1 = fitSLR(x, y)
y_predict = prefict(6, b0, b1)
print("y_predict:" + str(y_predict))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值