黑盒测试与白盒测试

黑盒测试
黑盒测试也称功能测试或数据驱动测试,它是在已知产品所应具有的功能,通过测试来检测每个功能是否都能正常使用,在测试时,把程序看作一个不能打开的黑盆子,在完全不考虑程序内部结构和内部特性的情况下,
测试者在程序接口进行测试,它只检查程序功能是否按照需求规格说明书的规定正常使用,程序是否能适当地接收输入数锯而产生正确的输出信息,并且保持外部信息(如数据库或文件)的完整性。黑盒测试方法主要有等价类划分、边值分析、因—果图、错误推测等,主要用于软件确认测试。 “黑盒”法着眼于程序外部结构、不考虑内部逻辑结构、针对软件界面和软件功能进行测试。“黑盒”法是穷举输入测试,只有把所有可能的输入都作为测试情况使用,才能以这种方法查出程序中所有的错误。


综合来说:黑盒测试主要是为了发现以下几类错误:

1、是否有不正确或遗漏的功能?
2、在接口上,输入是否能正确的接受?能否输出正确的结果?
3、是否有数据结构错误或外部信息(例如数据文件)访问错误?
4、性能上是否能够满足要求?
5、是否有初始化或终止性错误?


白盒测试:
白盒测试也称结构测试或逻辑驱动测试,它是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。“白盒”法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。“白盒”法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。


综合来说:白盒测试主要是想对程序模块进行如下检查:

1、对程序模块的所有独立的执行路径至少测试一遍。
2、对所有的逻辑判定,取“真”与取“假”的两种情况都能至少测一遍。
3、在循环的边界和运行的界限内执行循环体。
4、测试内部数据结构的有效性,等等。
本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值