- 缘起:
有个slg项目,所有玩家在一个大地图上移动, 有公用的动态障碍物
参考样例代码 Sample_TempObstacles里调用 dtTileCache 的 addObstacle、addBoxObstacle
(注:接口只是放入排队,调用后最好要调用update 确保动态障碍 走到 buildNavMeshTile,以便生效),可以添加圆形、矩形 3种情况的动态障碍物,基本能满足需求了。
但有个需求,玩家还有动态的障碍块, 每个玩家进度不同, 解锁情况也不一样。
【以下是之前实现的思路记录, 比较乱,要结论直接看 最后面参考官网代码修改后的 DetourTileCache】
目录
-
思路:
思路1. 每个玩家维护一份寻路数据, 但内存开销大,初始化慢。
且有公共的动态障碍 会有变化,需要全部,刷一遍,效率慢, 不太可行
思路2. 公用一份寻路数据, 由于个人的动态障碍,位置是固定的,只不过解锁进度不一样, 所以可以初始化这些动态障碍,存下ref, 等到某个玩家寻路时,再手动开关 这个ref(不是删除,而是改状态),
临时开关动态障碍物方法:
1.dtTileCache::getObstacleByRef 找到 ob,
2. 需要关闭 则 ob->state = DT_OBSTACLE_EMPTY,需要开启 则 ob->state = DT_OBSTACLE_PROCESSED,
3.然后把ob->touched里关联的tile 执行一下buildNavMeshTile。
方案是有效的,但块数多了之后,切换2个差异很大的玩家,会卡很久, 放弃。
P.S. 尝试途中发现 很大的矩形障碍物,会有部分不生效的问题,因为 ob->touched默认只有8个 DT_MAX_TOUCHED_TILES, 所以要么调大这个参数,要么把动态障碍物分割成多块。
P.S. 动态障碍物有数量上限, 写在导出的.bin文件的头信息里,可以改导出工具,当然也可以自己强制写死。
思路3. 应该可行的方案。
看demo时,发现有可以单独开关一个 poly的功能接口, (CrowdTool.cpp的 1039行左右:
unsigned short flags = 0;
if (dtStatusSucceed(nav->getPolyFlags(ref, &flags)))
{
flags ^= SAMPLE_POLYFLAGS_DISABLED;
nav->setPolyFlags(ref, flags);
}
想到可以找到这个障碍物下的poly,然后控制它的状态。
怎么取呢?
1. 添加的动态障碍不能变成真的阻挡物,一般情况下要能同行,怎么做呢? 发现本身就支持
dtTileCache::buildNavMeshTile 里 dtMarkBoxArea 调用的接口最后一个参数,可以传层级,默认是0(会变成障碍), 我改成3 (SAMPLE_POLYAREA_DOOR), 寻路时过滤排除条件SAMPLE_POLYFLAGS_DOOR,则能实现绕路, 正常可以通过,然后 单独开关对应的poly状态,则可绕路。
所以我扩展了 dtTileCacheObstacle 结构体,增加 unsigned char areaId; 方便添加动态障碍时传递
2. 如何找到对应动态障碍物覆盖到的poly?
思路,找到关联的tile 即 ob->touched, 然后找到tile下的poly 判断其flag是否包含 SAMPLE_POLYFLAGS_DOOR(0x04), 但有可能取到的不是自己的。 发现有个navQuery->findPolysAroundShape( 接口可以使用, demo里也有例子。) 不过这个接口实际发现问题, 看图就明白了, 后面再说这个问题。
大概代码:
enum SamplePolyFlags
{
SAMPLE_POLYFLAGS_WALK = 0x01, // Ability to walk (ground, grass, road)
SAMPLE_POLYFLAGS_SWIM = 0x02, // Ability to swim (water).
SAMPLE_POLYFLAGS_DOOR = 0x04, // Ability to move through doors.
SAMPLE_POLYFLAGS_JUMP = 0x08, // Ability to jump.
SAMPLE_POLYFLAGS_DISABLED = 0x10, // Disabled polygon
SAMPLE_POLYFLAGS_ALL = 0xffff // All abilities.
};
void dtTileCache::setPolyState(dtNavMesh* navmesh, dtPolyRef ref, bool bEnable) {
unsigned short flags = 0;
if (dtStatusSucceed(navmesh->getPolyFlags(ref, &flags)))
{
if (bEnable) {
if ((flags & SAMPLE_POLYFLAGS_DISABLED) != 0) {
flags ^= SAMPLE_POLYFLAGS_DISABLED;
}
}
else {
if ((flags & SAMPLE_POLYFLAGS_DISABLED) == 0) {
flags ^= SAMPLE_POLYFLAGS_DISABLED;
}
}
navmesh->setPolyFlags(ref, flags);
}
}
if(tLastUpdate 已超时 (或者说地图障碍有变化才需要)) {
dtPolyRef m_startRef;
static float nearestPt[3];
bool isOverPoly = false;
dtQueryFilter m_filter;
m_filter.setIncludeFlags(SAMPLE_POLYFLAGS_DOOR);
// 找到m_startRef
auto status = navQuery->findNearestPoly(startPos, m_polyPickExt, &m_filter, &m_startRef, nearestPt, &isOverPoly);
// queryPoly 多边形数组 范围内的指定poly
navQuery->findPolysAroundShape(m_startRef, queryPoly, 4, &m_filter,
m_polys, m_parent, 0, &m_npolys, MAX_POLYS);
// 对应的poly记录到缓存, 以便一定时间后才去刷新一下
stObParam.setPoly.clear();
for (int i = 0; i < m_npolys; ++i) {
stObParam.setPoly.emplace(m_polys[i]);
}
stObParam.tLastUpdate = tNow;
}
for (auto polyRef: stObParam.setPoly) {
setPolyState(navmesh, polyRef, !bOpen);
}
实际发现一般的块没问题,开关效率也挺高的。
就是前面提到的问题,就像图中所示, 中间隔了障碍物的,似乎找不到所有的poly块, 个人考虑了一个思路: 遍历相关Tile下的poly 作为起始搜索 对应区域,排除已经搜索到的。 这个就各自发挥看看有什么更好的方案。我先去试验了。
ps1. 发现 一个 navQuery->queryPolygons(, 如果是平的方方正正的矩形(DT_OBSTACLE_ORIENTED_BOX), 用这个加ob参数就能直接取到对应区域的吧? ,由于项目里不是,所以没实验。
最后实验出来查找poly块方案:
找出动态障碍的矩形区域所有有关poly 然后以其为起点,调用findPolysAroundShape:
navQuery->queryPolygons(s_posCenter, s_polyPickExt, &s_filter, s_polys1, &npolys1, MAX_POLYS);
std::set<dtPolyRef> setUsed;
static dtPolyRef s_polys2[MAX_POLYS];
int npolys = 0;
for (int i = 0; i < npolys1; ++i) {
auto startRef = s_polys1[i];
//printf("test start:%u\n", startRef);
if (setUsed.count(startRef) == 0) {
setUsed.emplace(startRef);
//printf("test start:%u to found \n", startRef);
navQuery->findPolysAroundShape(startRef, queryPoly, 4, &s_filter,
s_polys2, s_parent, 0, &npolys, MAX_POLYS);
//printf("test start:%u found poly:%d \n", startRef, npolys);
for (int j = 0; j < npolys; ++j) {
setUsed.emplace(s_polys2[j]);
stObParam.setPoly.emplace(s_polys2[j]);
}
}
}
注:.把大块的动态障碍区域分割成小块一点(否则有些开关不生效)
注:还有一个问题,两块区域相连,会被连载一起, 获得的poly很可能跨了2个区域。 【个人处理方案:不同动态障碍物块矩形区域缩小一点点,避免2块相连】
-
最后结论方案
1. 添加动态障碍物,层级传SAMPLE_POLYFLAGS_DOOR,得到障碍物 ref, 记录下来和游戏里的对应关系
比如:
dtObstacleRef ob_id = 0;
m_tileCache->addBoxObstacle(pc, he, static_cast<float>(CONST_PI/4), &ob_id, SAMPLE_POLYFLAGS_DOOR);
m_tileCache->update(1.0f, m_navMesh);
m_tileCache->update(1.0f, m_navMesh);
m_obstacle_ids.insert(ob_id);
2. 上面调用update里 会 触发 dtTileCache::buildNavMeshTile,里面会用SAMPLE_POLYFLAGS_DOOR层 构建出障碍物网格,网格属性里会带这个层标识。
这个函数比较耗时,不过一般是第一次初始化调用一下就行了。
3. 前面取到的ob_id 调用,记录下 ob_id 对应的实际矩形区域,(为了搜索 poly时用)
m_tileCache->setObstacleRange(ob_id, rectPos);
4. 查找ob_id对应的poly块,核心函数 updateDoorObstaclePolys
(如果地图没有其他动态障碍物 变更,则只调用一次就行。我这边项目还混杂其他公共的障碍物变更所以,定时调用一下)
里面就是 用步骤3 ob_id 记录的实际矩形区域,构建一个查询区域,调用navQuery->queryPolygons (这个是粗略的找出规整矩形里得polyref,这些不一定是实际需要的,只是为了不遗漏),然后遍历这些poly,作为起点,调用 navQuery->findPolysAroundShape(参考了demo里的例子)
这样 ob_id 和 poly的对应关系就都找到了。
5. 寻路前 根据需要 切换 ob_id 的开 或 关
即调用 dtTileCache::setObstaclePolysState, 开表示不让走,关 则 可通行,
这个函数是为了避免修改频繁做过一些状态缓存优化,
实际调用 navmesh->setPolyEnable(polyRef, bEnablePoly); 开关每个 poly块,这个不费时。
#define SAMPLE_POLYFLAGS_DISABLED 0x10 // Disabled polygon
dtStatus dtNavMesh::setPolyEnable(dtPolyRef ref, bool bEnable)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
if (bEnable) {
if ((poly->flags & SAMPLE_POLYFLAGS_DISABLED) != 0) {
poly->flags ^= SAMPLE_POLYFLAGS_DISABLED;
}
}
else {
if ((poly->flags & SAMPLE_POLYFLAGS_DISABLED) == 0) {
poly->flags ^= SAMPLE_POLYFLAGS_DISABLED;
}
}
return DT_SUCCESS;
}
6.寻路时排除掉SAMPLE_POLYFLAGS_DISABLED flag的层,就是把 poly 开启的 作为障碍过滤掉。
dtQueryFilter m_filter;
m_filter.setExcludeFlags(SAMPLE_POLYFLAGS_DISABLED);
附2个文件代码:
DetourTileCache.h
#ifndef DETOURTILECACHE_H
#define DETOURTILECACHE_H
#include "DetourStatus.h"
#include "DetourNavMesh.h"
#include "DetourNavMeshQuery.h"
#include <map>
#include <set>
typedef unsigned int dtObstacleRef;
typedef unsigned int dtCompressedTileRef;
/// Flags for addTile
enum dtCompressedTileFlags
{
DT_COMPRESSEDTILE_FREE_DATA = 0x01, ///< Navmesh owns the tile memory and should free it.
};
struct dtCompressedTile
{
unsigned int salt; ///< Counter describing modifications to the tile.
struct dtTileCacheLayerHeader* header;
unsigned char* compressed;
int compressedSize;
unsigned char* data;
int dataSize;
unsigned int flags;
dtCompressedTile* next;
};
enum ObstacleState
{
DT_OBSTACLE_EMPTY,
DT_OBSTACLE_PROCESSING,
DT_OBSTACLE_PROCESSED,
DT_OBSTACLE_REMOVING,
};
enum ObstacleType
{
DT_OBSTACLE_CYLINDER,
DT_OBSTACLE_BOX, // AABB
DT_OBSTACLE_ORIENTED_BOX, // OBB
};
struct dtObstacleCylinder
{
float pos[ 3 ];
float radius;
float height;
};
struct dtObstacleBox
{
float bmin[ 3 ];
float bmax[ 3 ];
};
struct dtObstacleOrientedBox
{
float center[ 3 ];
float halfExtents[ 3 ];
float rotAux[ 2 ]; //{ cos(0.5f*angle)*sin(-0.5f*angle); cos(0.5f*angle)*cos(0.5f*angle) - 0.5 }
};
static const int DT_MAX_TOUCHED_TILES = 64;
struct dtTileCacheObstacle
{
union
{
dtObstacleCylinder cylinder;
dtObstacleBox box;
dtObstacleOrientedBox orientedBox;
};
dtCompressedTileRef touched[DT_MAX_TOUCHED_TILES];
dtCompressedTileRef pending[DT_MAX_TOUCHED_TILES];
unsigned short salt;
unsigned char type;
unsigned char state;
unsigned char ntouched;
unsigned char npending;
unsigned char areaId;
dtTileCacheObstacle* next;
};
struct dtTileCacheParams
{
float orig[3];
float cs, ch;
int width, height;
float walkableHeight;
float walkableRadius;
float walkableClimb;
float maxSimplificationError;
int maxTiles;
int maxObstacles;
};
struct dtTileCacheMeshProcess
{
virtual ~dtTileCacheMeshProcess() { }
virtual void process(struct dtNavMeshCreateParams* params,
unsigned char* polyAreas, unsigned short* polyFlags) = 0;
};
struct dtRectObstacleParam
{
float queryPoly[4 * 3];
bool bOpen = false;
std::set<dtPolyRef> setPoly;
};
class dtTileCache
{
public:
dtTileCache();
~dtTileCache();
struct dtTileCacheAlloc* getAlloc() { return m_talloc; }
struct dtTileCacheCompressor* getCompressor() { return m_tcomp; }
const dtTileCacheParams* getParams() const { return &m_params; }
inline int getTileCount() const { return m_params.maxTiles; }
inline const dtCompressedTile* getTile(const int i) const { return &m_tiles[i]; }
inline int getObstacleCount() const { return m_params.maxObstacles; }
inline const dtTileCacheObstacle* getObstacle(const int i) const { return &m_obstacles[i]; }
const dtTileCacheObstacle* getObstacleByRef(dtObstacleRef ref);
dtObstacleRef getObstacleRef(const dtTileCacheObstacle* obmin) const;
dtStatus init(const dtTileCacheParams* params,
struct dtTileCacheAlloc* talloc,
struct dtTileCacheCompressor* tcomp,
struct dtTileCacheMeshProcess* tmproc);
int getTilesAt(const int tx, const int ty, dtCompressedTileRef* tiles, const int maxTiles) const ;
dtCompressedTile* getTileAt(const int tx, const int ty, const int tlayer);
dtCompressedTileRef getTileRef(const dtCompressedTile* tile) const;
const dtCompressedTile* getTileByRef(dtCompressedTileRef ref) const;
dtStatus addTile(unsigned char* data, const int dataSize, unsigned char flags, dtCompressedTileRef* result);
dtStatus removeTile(dtCompressedTileRef ref, unsigned char** data, int* dataSize);
// Cylinder obstacle.
dtStatus addObstacle(const float* pos, const float radius, const float height, dtObstacleRef* result, const unsigned char areaId = 0);
// Aabb obstacle.
dtStatus addBoxObstacle(const float* bmin, const float* bmax, dtObstacleRef* result, const unsigned char areaId = 0);
// Box obstacle: can be rotated in Y.
dtStatus addBoxObstacle(const float* center, const float* halfExtents, const float yRadians, dtObstacleRef* result, const unsigned char areaId = 0);
dtStatus removeObstacle(const dtObstacleRef ref);
dtStatus queryTiles(const float* bmin, const float* bmax,
dtCompressedTileRef* results, int* resultCount, const int maxResults) const;
/// Updates the tile cache by rebuilding tiles touched by unfinished obstacle requests.
/// @param[in] dt The time step size. Currently not used.
/// @param[in] navmesh The mesh to affect when rebuilding tiles.
/// @param[out] upToDate Whether the tile cache is fully up to date with obstacle requests and tile rebuilds.
/// If the tile cache is up to date another (immediate) call to update will have no effect;
/// otherwise another call will continue processing obstacle requests and tile rebuilds.
dtStatus update(const float dt, class dtNavMesh* navmesh, bool* upToDate = 0);
dtStatus buildNavMeshTilesAt(const int tx, const int ty, class dtNavMesh* navmesh);
dtStatus buildNavMeshTile(const dtCompressedTileRef ref, class dtNavMesh* navmesh);
/*
* add by tianyh 2018/4/18 16:12
* @param [in] dtCompressedTileRef
* @params [in] navmesh
* @param [out] nav_data
* @param [out] nav_data_size
*/
dtStatus buildNavMeshTile(const dtCompressedTileRef ref, class dtNavMesh* navmesh, unsigned char*& nav_data, int& data_size);
void setPolyState(dtNavMesh* navmesh, dtPolyRef ref, bool bEnable);
void updateDoorObstaclePolys(dtNavMeshQuery* navQuery);
void setObstaclePolysState(dtNavMeshQuery* navQuery, dtNavMesh* navmesh, dtObstacleRef obRef, bool bOpen, time_t tNow);
void setObstacleRange(dtObstacleRef obRef, const float rectPos[]);
void calcTightTileBounds(const struct dtTileCacheLayerHeader* header, float* bmin, float* bmax) const;
void getObstacleBounds(const struct dtTileCacheObstacle* ob, float* bmin, float* bmax) const;
/// Encodes a tile id.
inline dtCompressedTileRef encodeTileId(unsigned int salt, unsigned int it) const
{
return ((dtCompressedTileRef)salt << m_tileBits) | (dtCompressedTileRef)it;
}
/// Decodes a tile salt.
inline unsigned int decodeTileIdSalt(dtCompressedTileRef ref) const
{
const dtCompressedTileRef saltMask = ((dtCompressedTileRef)1<<m_saltBits)-1;
return (unsigned int)((ref >> m_tileBits) & saltMask);
}
/// Decodes a tile id.
inline unsigned int decodeTileIdTile(dtCompressedTileRef ref) const
{
const dtCompressedTileRef tileMask = ((dtCompressedTileRef)1<<m_tileBits)-1;
return (unsigned int)(ref & tileMask);
}
/// Encodes an obstacle id.
inline dtObstacleRef encodeObstacleId(unsigned int salt, unsigned int it) const
{
return ((dtObstacleRef)salt << 16) | (dtObstacleRef)it;
}
/// Decodes an obstacle salt.
inline unsigned int decodeObstacleIdSalt(dtObstacleRef ref) const
{
const dtObstacleRef saltMask = ((dtObstacleRef)1<<16)-1;
return (unsigned int)((ref >> 16) & saltMask);
}
/// Decodes an obstacle id.
inline unsigned int decodeObstacleIdObstacle(dtObstacleRef ref) const
{
const dtObstacleRef tileMask = ((dtObstacleRef)1<<16)-1;
return (unsigned int)(ref & tileMask);
}
inline void setLastUpdateTime(time_t t64Time)
{
m_t64LastUpdateTime = t64Time;
}
private:
// Explicitly disabled copy constructor and copy assignment operator.
dtTileCache(const dtTileCache&);
dtTileCache& operator=(const dtTileCache&);
enum ObstacleRequestAction
{
REQUEST_ADD,
REQUEST_REMOVE,
};
struct ObstacleRequest
{
int action;
dtObstacleRef ref;
};
int m_tileLutSize; ///< Tile hash lookup size (must be pot).
int m_tileLutMask; ///< Tile hash lookup mask.
dtCompressedTile** m_posLookup; ///< Tile hash lookup.
dtCompressedTile* m_nextFreeTile; ///< Freelist of tiles.
dtCompressedTile* m_tiles; ///< List of tiles.
unsigned int m_saltBits; ///< Number of salt bits in the tile ID.
unsigned int m_tileBits; ///< Number of tile bits in the tile ID.
dtTileCacheParams m_params;
dtTileCacheAlloc* m_talloc;
dtTileCacheCompressor* m_tcomp;
dtTileCacheMeshProcess* m_tmproc;
dtTileCacheObstacle* m_obstacles;
dtTileCacheObstacle* m_nextFreeObstacle;
static const int MAX_REQUESTS = 64;
ObstacleRequest m_reqs[MAX_REQUESTS];
int m_nreqs;
static const int MAX_UPDATE = 64;
dtCompressedTileRef m_update[MAX_UPDATE];
int m_nupdate;
time_t m_t64LastUpdateTime = 0;
std::map<dtObstacleRef, dtRectObstacleParam> m_mapObstacleParams;
std::map<dtPolyRef, std::set<dtObstacleRef> > m_mapDoorPoly2Obstacles;
};
dtTileCache* dtAllocTileCache();
void dtFreeTileCache(dtTileCache* tc);
#endif
DetourTileCache.cpp
#include "DetourTileCache.h"
#include "DetourTileCacheBuilder.h"
#include "DetourNavMeshBuilder.h"
#include "DetourNavMesh.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
#include <string.h>
#include <new>
#include "platform/typedefine.h"
#include "toolkit/TimeTools.h"
dtTileCache* dtAllocTileCache()
{
void* mem = dtAlloc(sizeof(dtTileCache), DT_ALLOC_PERM);
if (!mem) return 0;
return new(mem) dtTileCache;
}
void dtFreeTileCache(dtTileCache* tc)
{
if (!tc) return;
tc->~dtTileCache();
dtFree(tc);
}
static bool contains(const dtCompressedTileRef* a, const int n, const dtCompressedTileRef v)
{
for (int i = 0; i < n; ++i)
if (a[i] == v)
return true;
return false;
}
inline int computeTileHash(int x, int y, const int mask)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int n = h1 * x + h2 * y;
return (int)(n & mask);
}
struct NavMeshTileBuildContext
{
inline NavMeshTileBuildContext(struct dtTileCacheAlloc* a) : layer(0), lcset(0), lmesh(0), alloc(a) {}
inline ~NavMeshTileBuildContext() { purge(); }
void purge()
{
dtFreeTileCacheLayer(alloc, layer);
layer = 0;
dtFreeTileCacheContourSet(alloc, lcset);
lcset = 0;
dtFreeTileCachePolyMesh(alloc, lmesh);
lmesh = 0;
}
struct dtTileCacheLayer* layer;
struct dtTileCacheContourSet* lcset;
struct dtTileCachePolyMesh* lmesh;
struct dtTileCacheAlloc* alloc;
};
dtTileCache::dtTileCache() :
m_tileLutSize(0),
m_tileLutMask(0),
m_posLookup(0),
m_nextFreeTile(0),
m_tiles(0),
m_saltBits(0),
m_tileBits(0),
m_talloc(0),
m_tcomp(0),
m_tmproc(0),
m_obstacles(0),
m_nextFreeObstacle(0),
m_nreqs(0),
m_nupdate(0),
m_t64LastUpdateTime(0)
{
memset(&m_params, 0, sizeof(m_params));
memset(m_reqs, 0, sizeof(ObstacleRequest) * MAX_REQUESTS);
}
dtTileCache::~dtTileCache()
{
for (int i = 0; i < m_params.maxTiles; ++i)
{
if (m_tiles[i].flags & DT_COMPRESSEDTILE_FREE_DATA)
{
dtFree(m_tiles[i].data);
m_tiles[i].data = 0;
}
}
dtFree(m_obstacles);
m_obstacles = 0;
dtFree(m_posLookup);
m_posLookup = 0;
dtFree(m_tiles);
m_tiles = 0;
m_nreqs = 0;
m_nupdate = 0;
}
const dtCompressedTile* dtTileCache::getTileByRef(dtCompressedTileRef ref) const
{
if (!ref)
return 0;
unsigned int tileIndex = decodeTileIdTile(ref);
unsigned int tileSalt = decodeTileIdSalt(ref);
if ((int)tileIndex >= m_params.maxTiles)
return 0;
const dtCompressedTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return 0;
return tile;
}
dtStatus dtTileCache::init(const dtTileCacheParams* params,
dtTileCacheAlloc* talloc,
dtTileCacheCompressor* tcomp,
dtTileCacheMeshProcess* tmproc)
{
m_talloc = talloc;
m_tcomp = tcomp;
m_tmproc = tmproc;
m_nreqs = 0;
memcpy(&m_params, params, sizeof(m_params));
// Alloc space for obstacles.
m_obstacles = (dtTileCacheObstacle*)dtAlloc(sizeof(dtTileCacheObstacle)*m_params.maxObstacles, DT_ALLOC_PERM);
if (!m_obstacles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
memset(m_obstacles, 0, sizeof(dtTileCacheObstacle)*m_params.maxObstacles);
m_nextFreeObstacle = 0;
for (int i = m_params.maxObstacles-1; i >= 0; --i)
{
m_obstacles[i].salt = 1;
m_obstacles[i].next = m_nextFreeObstacle;
m_obstacles[i].areaId = 0;
m_nextFreeObstacle = &m_obstacles[i];
}
// Init tiles
m_tileLutSize = dtNextPow2(m_params.maxTiles/4);
if (!m_tileLutSize) m_tileLutSize = 1;
m_tileLutMask = m_tileLutSize-1;
m_tiles = (dtCompressedTile*)dtAlloc(sizeof(dtCompressedTile)*m_params.maxTiles, DT_ALLOC_PERM);
if (!m_tiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
m_posLookup = (dtCompressedTile**)dtAlloc(sizeof(dtCompressedTile*)*m_tileLutSize, DT_ALLOC_PERM);
if (!m_posLookup)
return DT_FAILURE | DT_OUT_OF_MEMORY;
memset(m_tiles, 0, sizeof(dtCompressedTile)*m_params.maxTiles);
memset(m_posLookup, 0, sizeof(dtCompressedTile*)*m_tileLutSize);
m_nextFreeTile = 0;
for (int i = m_params.maxTiles-1; i >= 0; --i)
{
m_tiles[i].salt = 1;
m_tiles[i].next = m_nextFreeTile;
m_nextFreeTile = &m_tiles[i];
}
// Init ID generator values.
m_tileBits = dtIlog2(dtNextPow2((unsigned int)m_params.maxTiles));
// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits);
if (m_saltBits < 10)
return DT_FAILURE | DT_INVALID_PARAM;
return DT_SUCCESS;
}
int dtTileCache::getTilesAt(const int tx, const int ty, dtCompressedTileRef* tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(tx,ty,m_tileLutMask);
dtCompressedTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->tx == tx &&
tile->header->ty == ty)
{
if (n < maxTiles)
tiles[n++] = getTileRef(tile);
}
tile = tile->next;
}
return n;
}
dtCompressedTile* dtTileCache::getTileAt(const int tx, const int ty, const int tlayer)
{
// Find tile based on hash.
int h = computeTileHash(tx,ty,m_tileLutMask);
dtCompressedTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->tx == tx &&
tile->header->ty == ty &&
tile->header->tlayer == tlayer)
{
return tile;
}
tile = tile->next;
}
return 0;
}
dtCompressedTileRef dtTileCache::getTileRef(const dtCompressedTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return (dtCompressedTileRef)encodeTileId(tile->salt, it);
}
dtObstacleRef dtTileCache::getObstacleRef(const dtTileCacheObstacle* ob) const
{
if (!ob) return 0;
const unsigned int idx = (unsigned int)(ob - m_obstacles);
return encodeObstacleId(ob->salt, idx);
}
const dtTileCacheObstacle* dtTileCache::getObstacleByRef(dtObstacleRef ref)
{
if (!ref)
return 0;
unsigned int idx = decodeObstacleIdObstacle(ref);
if ((int)idx >= m_params.maxObstacles)
return 0;
const dtTileCacheObstacle* ob = &m_obstacles[idx];
unsigned int salt = decodeObstacleIdSalt(ref);
if (ob->salt != salt)
return 0;
return ob;
}
dtStatus dtTileCache::addTile(unsigned char* data, const int dataSize, unsigned char flags, dtCompressedTileRef* result)
{
// Make sure the data is in right format.
dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data;
if (header->magic != DT_TILECACHE_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (header->version != DT_TILECACHE_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
// Make sure the location is free.
if (getTileAt(header->tx, header->ty, header->tlayer))
return DT_FAILURE;
// Allocate a tile.
dtCompressedTile* tile = 0;
if (m_nextFreeTile)
{
tile = m_nextFreeTile;
m_nextFreeTile = tile->next;
tile->next = 0;
}
// Make sure we could allocate a tile.
if (!tile)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Insert tile into the position lut.
int h = computeTileHash(header->tx, header->ty, m_tileLutMask);
tile->next = m_posLookup[h];
m_posLookup[h] = tile;
// Init tile.
const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
tile->header = (dtTileCacheLayerHeader*)data;
tile->data = data;
tile->dataSize = dataSize;
tile->compressed = tile->data + headerSize;
tile->compressedSize = tile->dataSize - headerSize;
tile->flags = flags;
if (result)
*result = getTileRef(tile);
return DT_SUCCESS;
}
dtStatus dtTileCache::removeTile(dtCompressedTileRef ref, unsigned char** data, int* dataSize)
{
if (!ref)
return DT_FAILURE | DT_INVALID_PARAM;
unsigned int tileIndex = decodeTileIdTile(ref);
unsigned int tileSalt = decodeTileIdSalt(ref);
if ((int)tileIndex >= m_params.maxTiles)
return DT_FAILURE | DT_INVALID_PARAM;
dtCompressedTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return DT_FAILURE | DT_INVALID_PARAM;
// Remove tile from hash lookup.
const int h = computeTileHash(tile->header->tx,tile->header->ty,m_tileLutMask);
dtCompressedTile* prev = 0;
dtCompressedTile* cur = m_posLookup[h];
while (cur)
{
if (cur == tile)
{
if (prev)
prev->next = cur->next;
else
m_posLookup[h] = cur->next;
break;
}
prev = cur;
cur = cur->next;
}
// Reset tile.
if (tile->flags & DT_COMPRESSEDTILE_FREE_DATA)
{
// Owns data
dtFree(tile->data);
tile->data = 0;
tile->dataSize = 0;
if (data) *data = 0;
if (dataSize) *dataSize = 0;
}
else
{
if (data) *data = tile->data;
if (dataSize) *dataSize = tile->dataSize;
}
tile->header = 0;
tile->data = 0;
tile->dataSize = 0;
tile->compressed = 0;
tile->compressedSize = 0;
tile->flags = 0;
// Update salt, salt should never be zero.
tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
if (tile->salt == 0)
tile->salt++;
// Add to free list.
tile->next = m_nextFreeTile;
m_nextFreeTile = tile;
return DT_SUCCESS;
}
dtStatus dtTileCache::addObstacle(const float* pos, const float radius, const float height, dtObstacleRef* result, const unsigned char areaId/* = 0*/)
{
if (m_nreqs >= MAX_REQUESTS)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
dtTileCacheObstacle* ob = 0;
if (m_nextFreeObstacle)
{
ob = m_nextFreeObstacle;
m_nextFreeObstacle = ob->next;
ob->next = 0;
}
if (!ob)
return DT_FAILURE | DT_OUT_OF_MEMORY;
unsigned short salt = ob->salt;
memset(ob, 0, sizeof(dtTileCacheObstacle));
ob->salt = salt;
ob->areaId = areaId;
ob->state = DT_OBSTACLE_PROCESSING;
ob->type = DT_OBSTACLE_CYLINDER;
dtVcopy(ob->cylinder.pos, pos);
ob->cylinder.radius = radius;
ob->cylinder.height = height;
ObstacleRequest* req = &m_reqs[m_nreqs++];
memset(req, 0, sizeof(ObstacleRequest));
req->action = REQUEST_ADD;
req->ref = getObstacleRef(ob);
if (result)
*result = req->ref;
return DT_SUCCESS;
}
dtStatus dtTileCache::addBoxObstacle(const float* bmin, const float* bmax, dtObstacleRef* result, const unsigned char areaId/* = 0*/)
{
if (m_nreqs >= MAX_REQUESTS)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
dtTileCacheObstacle* ob = 0;
if (m_nextFreeObstacle)
{
ob = m_nextFreeObstacle;
m_nextFreeObstacle = ob->next;
ob->next = 0;
}
if (!ob)
return DT_FAILURE | DT_OUT_OF_MEMORY;
unsigned short salt = ob->salt;
memset(ob, 0, sizeof(dtTileCacheObstacle));
ob->salt = salt;
ob->areaId = areaId;
ob->state = DT_OBSTACLE_PROCESSING;
ob->type = DT_OBSTACLE_BOX;
dtVcopy(ob->box.bmin, bmin);
dtVcopy(ob->box.bmax, bmax);
ObstacleRequest* req = &m_reqs[m_nreqs++];
memset(req, 0, sizeof(ObstacleRequest));
req->action = REQUEST_ADD;
req->ref = getObstacleRef(ob);
if (result)
*result = req->ref;
return DT_SUCCESS;
}
dtStatus dtTileCache::addBoxObstacle(const float* center, const float* halfExtents, const float yRadians, dtObstacleRef* result, const unsigned char areaId/* = 0*/)
{
if (m_nreqs >= MAX_REQUESTS)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
dtTileCacheObstacle* ob = 0;
if (m_nextFreeObstacle)
{
ob = m_nextFreeObstacle;
m_nextFreeObstacle = ob->next;
ob->next = 0;
}
if (!ob)
return DT_FAILURE | DT_OUT_OF_MEMORY;
unsigned short salt = ob->salt;
memset(ob, 0, sizeof(dtTileCacheObstacle));
ob->salt = salt;
ob->areaId = areaId;
ob->state = DT_OBSTACLE_PROCESSING;
ob->type = DT_OBSTACLE_ORIENTED_BOX;
dtVcopy(ob->orientedBox.center, center);
dtVcopy(ob->orientedBox.halfExtents, halfExtents);
float coshalf= cosf(0.5f*yRadians);
float sinhalf = sinf(-0.5f*yRadians);
ob->orientedBox.rotAux[0] = coshalf*sinhalf;
ob->orientedBox.rotAux[1] = coshalf*coshalf - 0.5f;
ObstacleRequest* req = &m_reqs[m_nreqs++];
memset(req, 0, sizeof(ObstacleRequest));
req->action = REQUEST_ADD;
req->ref = getObstacleRef(ob);
if (result)
*result = req->ref;
return DT_SUCCESS;
}
dtStatus dtTileCache::removeObstacle(const dtObstacleRef ref)
{
if (!ref)
return DT_SUCCESS;
if (m_nreqs >= MAX_REQUESTS)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
ObstacleRequest* req = &m_reqs[m_nreqs++];
memset(req, 0, sizeof(ObstacleRequest));
req->action = REQUEST_REMOVE;
req->ref = ref;
return DT_SUCCESS;
}
dtStatus dtTileCache::queryTiles(const float* bmin, const float* bmax,
dtCompressedTileRef* results, int* resultCount, const int maxResults) const
{
const int MAX_TILES = 32;
dtCompressedTileRef tiles[MAX_TILES];
int n = 0;
const float tw = m_params.width * m_params.cs;
const float th = m_params.height * m_params.cs;
const int tx0 = (int)dtMathFloorf((bmin[0]-m_params.orig[0]) / tw);
const int tx1 = (int)dtMathFloorf((bmax[0]-m_params.orig[0]) / tw);
const int ty0 = (int)dtMathFloorf((bmin[2]-m_params.orig[2]) / th);
const int ty1 = (int)dtMathFloorf((bmax[2]-m_params.orig[2]) / th);
for (int ty = ty0; ty <= ty1; ++ty)
{
for (int tx = tx0; tx <= tx1; ++tx)
{
const int ntiles = getTilesAt(tx,ty,tiles,MAX_TILES);
for (int i = 0; i < ntiles; ++i)
{
const dtCompressedTile* tile = &m_tiles[decodeTileIdTile(tiles[i])];
float tbmin[3], tbmax[3];
calcTightTileBounds(tile->header, tbmin, tbmax);
if (dtOverlapBounds(bmin,bmax, tbmin,tbmax))
{
if (n < maxResults)
results[n++] = tiles[i];
}
}
}
}
*resultCount = n;
return DT_SUCCESS;
}
dtStatus dtTileCache::update(const float /*dt*/, dtNavMesh* navmesh,
bool* upToDate)
{
if (m_nupdate == 0)
{
// Process requests.
for (int i = 0; i < m_nreqs; ++i)
{
ObstacleRequest* req = &m_reqs[i];
unsigned int idx = decodeObstacleIdObstacle(req->ref);
if ((int)idx >= m_params.maxObstacles)
continue;
dtTileCacheObstacle* ob = &m_obstacles[idx];
unsigned int salt = decodeObstacleIdSalt(req->ref);
if (ob->salt != salt)
continue;
if (req->action == REQUEST_ADD)
{
// Find touched tiles.
float bmin[3], bmax[3];
getObstacleBounds(ob, bmin, bmax);
int ntouched = 0;
queryTiles(bmin, bmax, ob->touched, &ntouched, DT_MAX_TOUCHED_TILES);
ob->ntouched = (unsigned char)ntouched;
// Add tiles to update list.
ob->npending = 0;
for (int j = 0; j < ob->ntouched; ++j)
{
if (m_nupdate < MAX_UPDATE)
{
if (!contains(m_update, m_nupdate, ob->touched[j]))
m_update[m_nupdate++] = ob->touched[j];
ob->pending[ob->npending++] = ob->touched[j];
}
}
}
else if (req->action == REQUEST_REMOVE)
{
// Prepare to remove obstacle.
ob->state = DT_OBSTACLE_REMOVING;
// Add tiles to update list.
ob->npending = 0;
for (int j = 0; j < ob->ntouched; ++j)
{
if (m_nupdate < MAX_UPDATE)
{
if (!contains(m_update, m_nupdate, ob->touched[j]))
m_update[m_nupdate++] = ob->touched[j];
ob->pending[ob->npending++] = ob->touched[j];
}
}
}
}
m_nreqs = 0;
}
dtStatus status = DT_SUCCESS;
// Process updates
if (m_nupdate)
{
// Build mesh
const dtCompressedTileRef ref = m_update[0];
status = buildNavMeshTile(ref, navmesh);
m_nupdate--;
if (m_nupdate > 0)
memmove(m_update, m_update+1, m_nupdate*sizeof(dtCompressedTileRef));
// Update obstacle states.
for (int i = 0; i < m_params.maxObstacles; ++i)
{
dtTileCacheObstacle* ob = &m_obstacles[i];
if (ob->state == DT_OBSTACLE_PROCESSING || ob->state == DT_OBSTACLE_REMOVING)
{
// Remove handled tile from pending list.
for (int j = 0; j < (int)ob->npending; j++)
{
if (ob->pending[j] == ref)
{
ob->pending[j] = ob->pending[(int)ob->npending-1];
ob->npending--;
break;
}
}
// If all pending tiles processed, change state.
if (ob->npending == 0)
{
if (ob->state == DT_OBSTACLE_PROCESSING)
{
ob->state = DT_OBSTACLE_PROCESSED;
}
else if (ob->state == DT_OBSTACLE_REMOVING)
{
ob->state = DT_OBSTACLE_EMPTY;
// Update salt, salt should never be zero.
ob->salt = (ob->salt+1) & ((1<<16)-1);
if (ob->salt == 0)
ob->salt++;
// Return obstacle to free list.
ob->next = m_nextFreeObstacle;
m_nextFreeObstacle = ob;
}
}
}
}
m_t64LastUpdateTime = TimeTools::getOperatingTime();
}
if (upToDate)
*upToDate = m_nupdate == 0 && m_nreqs == 0;
return status;
}
dtStatus dtTileCache::buildNavMeshTilesAt(const int tx, const int ty, dtNavMesh* navmesh)
{
const int MAX_TILES = 32;
dtCompressedTileRef tiles[MAX_TILES];
const int ntiles = getTilesAt(tx,ty,tiles,MAX_TILES);
for (int i = 0; i < ntiles; ++i)
{
dtStatus status = buildNavMeshTile(tiles[i], navmesh);
if (dtStatusFailed(status))
return status;
}
return DT_SUCCESS;
}
dtStatus dtTileCache::buildNavMeshTile(const dtCompressedTileRef ref, dtNavMesh* navmesh)
{
dtAssert(m_talloc);
dtAssert(m_tcomp);
unsigned int idx = decodeTileIdTile(ref);
if (idx > (unsigned int)m_params.maxTiles)
return DT_FAILURE | DT_INVALID_PARAM;
const dtCompressedTile* tile = &m_tiles[idx];
unsigned int salt = decodeTileIdSalt(ref);
if (tile->salt != salt)
return DT_FAILURE | DT_INVALID_PARAM;
m_talloc->reset();
NavMeshTileBuildContext bc(m_talloc);
const int walkableClimbVx = (int)(m_params.walkableClimb / m_params.ch);
dtStatus status;
// Decompress tile layer data.
status = dtDecompressTileCacheLayer(m_talloc, m_tcomp, tile->data, tile->dataSize, &bc.layer);
if (dtStatusFailed(status))
return status;
// Rasterize obstacles.
for (int i = 0; i < m_params.maxObstacles; ++i)
{
const dtTileCacheObstacle* ob = &m_obstacles[i];
if (ob->state == DT_OBSTACLE_EMPTY || ob->state == DT_OBSTACLE_REMOVING)
continue;
if (contains(ob->touched, ob->ntouched, ref))
{
if (ob->type == DT_OBSTACLE_CYLINDER)
{
dtMarkCylinderArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
ob->cylinder.pos, ob->cylinder.radius, ob->cylinder.height, ob->areaId);
}
else if (ob->type == DT_OBSTACLE_BOX)
{
dtMarkBoxArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
ob->box.bmin, ob->box.bmax, ob->areaId);
}
else if (ob->type == DT_OBSTACLE_ORIENTED_BOX)
{
dtMarkBoxArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
ob->orientedBox.center, ob->orientedBox.halfExtents, ob->orientedBox.rotAux, ob->areaId);
}
}
}
// Build navmesh
status = dtBuildTileCacheRegions(m_talloc, *bc.layer, walkableClimbVx);
if (dtStatusFailed(status))
return status;
bc.lcset = dtAllocTileCacheContourSet(m_talloc);
if (!bc.lcset)
return DT_FAILURE | DT_OUT_OF_MEMORY;
status = dtBuildTileCacheContours(m_talloc, *bc.layer, walkableClimbVx,
m_params.maxSimplificationError, *bc.lcset);
if (dtStatusFailed(status))
return status;
bc.lmesh = dtAllocTileCachePolyMesh(m_talloc);
if (!bc.lmesh)
return DT_FAILURE | DT_OUT_OF_MEMORY;
status = dtBuildTileCachePolyMesh(m_talloc, *bc.lcset, *bc.lmesh);
if (dtStatusFailed(status))
return status;
// Early out if the mesh tile is empty.
if (!bc.lmesh->npolys)
{
// Remove existing tile.
navmesh->removeTile(navmesh->getTileRefAt(tile->header->tx,tile->header->ty,tile->header->tlayer),0,0);
return DT_SUCCESS;
}
dtNavMeshCreateParams params;
memset(¶ms, 0, sizeof(params));
params.verts = bc.lmesh->verts;
params.vertCount = bc.lmesh->nverts;
params.polys = bc.lmesh->polys;
params.polyAreas = bc.lmesh->areas;
params.polyFlags = bc.lmesh->flags;
params.polyCount = bc.lmesh->npolys;
params.nvp = DT_VERTS_PER_POLYGON;
params.walkableHeight = m_params.walkableHeight;
params.walkableRadius = m_params.walkableRadius;
params.walkableClimb = m_params.walkableClimb;
params.tileX = tile->header->tx;
params.tileY = tile->header->ty;
params.tileLayer = tile->header->tlayer;
params.cs = m_params.cs;
params.ch = m_params.ch;
params.buildBvTree = false;
dtVcopy(params.bmin, tile->header->bmin);
dtVcopy(params.bmax, tile->header->bmax);
if (m_tmproc)
{
m_tmproc->process(¶ms, bc.lmesh->areas, bc.lmesh->flags);
}
unsigned char* navData = 0;
int navDataSize = 0;
if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize))
return DT_FAILURE;
// Remove existing tile.
navmesh->removeTile(navmesh->getTileRefAt(tile->header->tx,tile->header->ty,tile->header->tlayer),0,0);
// Add new tile, or leave the location empty.
if (navData)
{
// Let the navmesh own the data.
status = navmesh->addTile(navData,navDataSize,DT_TILE_FREE_DATA,0,0);
if (dtStatusFailed(status))
{
dtFree(navData);
return status;
}
}
return DT_SUCCESS;
}
enum SamplePolyFlags
{
SAMPLE_POLYFLAGS_WALK = 0x01, // Ability to walk (ground, grass, road)
SAMPLE_POLYFLAGS_SWIM = 0x02, // Ability to swim (water).
SAMPLE_POLYFLAGS_DOOR = 0x04, // Ability to move through doors.
SAMPLE_POLYFLAGS_JUMP = 0x08, // Ability to jump.
SAMPLE_POLYFLAGS_DISABLED = 0x10, // Disabled polygon
SAMPLE_POLYFLAGS_ALL = 0xffff // All abilities.
};
void dtTileCache::setPolyState(dtNavMesh* navmesh, dtPolyRef ref, bool bEnable) {
unsigned short flags = 0;
if (dtStatusSucceed(navmesh->getPolyFlags(ref, &flags)))
{
if (bEnable) {
if ((flags & SAMPLE_POLYFLAGS_DISABLED) != 0) {
flags ^= SAMPLE_POLYFLAGS_DISABLED;
}
}
else {
if ((flags & SAMPLE_POLYFLAGS_DISABLED) == 0) {
flags ^= SAMPLE_POLYFLAGS_DISABLED;
}
}
navmesh->setPolyFlags(ref, flags);
}
}
void dtTileCache::updateDoorObstaclePolys(dtNavMeshQuery* navQuery)
{
#define MAX_POLYS 1024
m_mapDoorPoly2Obstacles.clear();
for (auto& [obRef, stObParam] : m_mapObstacleParams) {
// 缓存超时一下,重新获取一下 相关polys
auto& queryPoly = stObParam.queryPoly;
static dtPolyRef s_polys1[MAX_POLYS];
int npolys1 = 0;
static dtPolyRef s_parent[MAX_POLYS];
static float s_polyPickExt[3];
s_polyPickExt[0] = 100.0f;
s_polyPickExt[1] = 2;
s_polyPickExt[2] = 100.0f;
dtQueryFilter s_filter;
/*m_filter.setIncludeFlags(SAMPLE_POLYFLAGS_ALL);
m_filter.setExcludeFlags(0);*/
s_filter.setIncludeFlags(SAMPLE_POLYFLAGS_DOOR); // SAMPLE_POLYFLAGS_DOOR = 0x04, // Ability to move through doors.
// 条件迷雾坐标是固定的矩形,旋转45度 LU LD RD UR 分别对应 [0,1,2 3,4,5 6,7,8 9,10,11]
float fMinX = queryPoly[9];
float fMaxX = queryPoly[3];
float fMinY = queryPoly[8];
float fMaxY = queryPoly[2];
//printf("(%f, %f) - (%f,%f) \n", fMinX, fMinY, fMaxX, fMaxY);
static float s_posCenter[3];
s_posCenter[0] = (fMinX + fMaxX) * 0.5f;
s_posCenter[1] = 0;
s_posCenter[2] = (fMinY + fMaxY) * 0.5f;
s_polyPickExt[0] = (fMaxX - fMinX) * 0.5f;
s_polyPickExt[1] = 2;
s_polyPickExt[2] = (fMaxY - fMinY) * 0.5f;
stObParam.setPoly.clear();
//printf("center:%f,%f, pickExt:%f,%f,%f \n", s_posCenter[0], s_posCenter[2], s_polyPickExt[0], s_polyPickExt[1], s_polyPickExt[2]);
navQuery->queryPolygons(s_posCenter, s_polyPickExt, &s_filter, s_polys1, &npolys1, MAX_POLYS);
std::set<dtPolyRef> setUsed;
static dtPolyRef s_polys2[MAX_POLYS];
int npolys = 0;
for (int i = 0; i < npolys1; ++i) {
auto startRef = s_polys1[i];
//printf("test start:%u\n", startRef);
if (setUsed.count(startRef) == 0) {
setUsed.emplace(startRef);
//printf("test start:%u to found \n", startRef);
navQuery->findPolysAroundShape(startRef, queryPoly, 4, &s_filter,
s_polys2, s_parent, 0, &npolys, MAX_POLYS);
//printf("test start:%u found poly:%d \n", startRef, npolys);
for (int j = 0; j < npolys; ++j) {
auto _polyRef = s_polys2[j];
setUsed.emplace(_polyRef);
stObParam.setPoly.emplace(_polyRef);
m_mapDoorPoly2Obstacles[_polyRef].emplace(obRef);
}
}
}
}
}
void dtTileCache::setObstaclePolysState(dtNavMeshQuery* navQuery, dtNavMesh* navmesh, dtObstacleRef obRef, bool bOpen, time_t tNow) {
auto it = m_mapObstacleParams.find(obRef);
if (it == m_mapObstacleParams.end()) {
return;
}
if(m_t64LastUpdateTime > 0 && m_t64LastUpdateTime < tNow + 240) {
this->updateDoorObstaclePolys(navQuery);
m_t64LastUpdateTime = 0;
}
auto& stObParam = it->second;
stObParam.bOpen = bOpen;
for (auto polyRef: stObParam.setPoly) {
auto itPoly = m_mapDoorPoly2Obstacles.find(polyRef);
if (itPoly != m_mapDoorPoly2Obstacles.end()) {
bool bEnablePoly = false; // poly块是否有效,有效就是可通过, false则表示不可走
for (auto& _obRef : itPoly->second) {
auto itOb = m_mapObstacleParams.find(_obRef);
if (itOb != m_mapObstacleParams.end()) {
if (!itOb->second.bOpen) { // 障碍区域没有开,即可通行,则相关poly就可以通过。
bEnablePoly = true;
break;
}
}
}
navmesh->setPolyEnable(polyRef, bEnablePoly);
}
}
}
void dtTileCache::setObstacleRange(dtObstacleRef obRef, const float rectPos[]) {
auto& stParam = m_mapObstacleParams[obRef];
stParam.queryPoly[0] = rectPos[0];
stParam.queryPoly[1] = 0;
stParam.queryPoly[2] = rectPos[1];
stParam.queryPoly[3] = rectPos[2];
stParam.queryPoly[4] = 0;
stParam.queryPoly[5] = rectPos[3];
stParam.queryPoly[6] = rectPos[4];
stParam.queryPoly[7] = 0;
stParam.queryPoly[8] = rectPos[5];
stParam.queryPoly[9] = rectPos[6];
stParam.queryPoly[10] = 0;
stParam.queryPoly[11] = rectPos[7];
}
void dtTileCache::calcTightTileBounds(const dtTileCacheLayerHeader* header, float* bmin, float* bmax) const
{
const float cs = m_params.cs;
bmin[0] = header->bmin[0] + header->minx*cs;
bmin[1] = header->bmin[1];
bmin[2] = header->bmin[2] + header->miny*cs;
bmax[0] = header->bmin[0] + (header->maxx+1)*cs;
bmax[1] = header->bmax[1];
bmax[2] = header->bmin[2] + (header->maxy+1)*cs;
}
void dtTileCache::getObstacleBounds(const struct dtTileCacheObstacle* ob, float* bmin, float* bmax) const
{
if (ob->type == DT_OBSTACLE_CYLINDER)
{
const dtObstacleCylinder &cl = ob->cylinder;
bmin[0] = cl.pos[0] - cl.radius;
bmin[1] = cl.pos[1];
bmin[2] = cl.pos[2] - cl.radius;
bmax[0] = cl.pos[0] + cl.radius;
bmax[1] = cl.pos[1] + cl.height;
bmax[2] = cl.pos[2] + cl.radius;
}
else if (ob->type == DT_OBSTACLE_BOX)
{
dtVcopy(bmin, ob->box.bmin);
dtVcopy(bmax, ob->box.bmax);
}
else if (ob->type == DT_OBSTACLE_ORIENTED_BOX)
{
const dtObstacleOrientedBox &orientedBox = ob->orientedBox;
float maxr = 1.41f*dtMax(orientedBox.halfExtents[0], orientedBox.halfExtents[2]);
bmin[0] = orientedBox.center[0] - maxr;
bmax[0] = orientedBox.center[0] + maxr;
bmin[1] = orientedBox.center[1] - orientedBox.halfExtents[1];
bmax[1] = orientedBox.center[1] + orientedBox.halfExtents[1];
bmin[2] = orientedBox.center[2] - maxr;
bmax[2] = orientedBox.center[2] + maxr;
}
}
dtStatus dtTileCache::buildNavMeshTile(const dtCompressedTileRef ref, dtNavMesh* navmesh, unsigned char * &nav_data, int & data_size)
{
dtAssert(m_talloc);
dtAssert(m_tcomp);
unsigned int idx = decodeTileIdTile(ref);
if (idx > (unsigned int)m_params.maxTiles)
return DT_FAILURE | DT_INVALID_PARAM;
const dtCompressedTile* tile = &m_tiles[idx];
unsigned int salt = decodeTileIdSalt(ref);
if (tile->salt != salt)
return DT_FAILURE | DT_INVALID_PARAM;
m_talloc->reset();
NavMeshTileBuildContext bc(m_talloc);
const int walkableClimbVx = (int)(m_params.walkableClimb / m_params.ch);
dtStatus status;
// Decompress tile layer data.
status = dtDecompressTileCacheLayer(m_talloc, m_tcomp, tile->data, tile->dataSize, &bc.layer);
if (dtStatusFailed(status))
return status;
// Rasterize obstacles.
for (int i = 0; i < m_params.maxObstacles; ++i)
{
const dtTileCacheObstacle* ob = &m_obstacles[i];
if (ob->state == DT_OBSTACLE_EMPTY || ob->state == DT_OBSTACLE_REMOVING)
continue;
if (contains(ob->touched, ob->ntouched, ref))
{
if (ob->type == DT_OBSTACLE_CYLINDER)
{
dtMarkCylinderArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
ob->cylinder.pos, ob->cylinder.radius, ob->cylinder.height, 0);
}
else if (ob->type == DT_OBSTACLE_BOX)
{
dtMarkBoxArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
ob->box.bmin, ob->box.bmax, 0);
}
else if (ob->type == DT_OBSTACLE_ORIENTED_BOX)
{
dtMarkBoxArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
ob->orientedBox.center, ob->orientedBox.halfExtents, ob->orientedBox.rotAux, 0);
}
}
}
// Build navmesh
status = dtBuildTileCacheRegions(m_talloc, *bc.layer, walkableClimbVx);
if (dtStatusFailed(status))
return status;
bc.lcset = dtAllocTileCacheContourSet(m_talloc);
if (!bc.lcset)
return DT_FAILURE | DT_OUT_OF_MEMORY;
status = dtBuildTileCacheContours(m_talloc, *bc.layer, walkableClimbVx,
m_params.maxSimplificationError, *bc.lcset);
if (dtStatusFailed(status))
return status;
bc.lmesh = dtAllocTileCachePolyMesh(m_talloc);
if (!bc.lmesh)
return DT_FAILURE | DT_OUT_OF_MEMORY;
status = dtBuildTileCachePolyMesh(m_talloc, *bc.lcset, *bc.lmesh);
if (dtStatusFailed(status))
return status;
// Early out if the mesh tile is empty.
if (!bc.lmesh->npolys)
{
// Remove existing tile.
navmesh->removeTile(navmesh->getTileRefAt(tile->header->tx,tile->header->ty,tile->header->tlayer),0,0);
return DT_SUCCESS;
}
dtNavMeshCreateParams params;
memset(¶ms, 0, sizeof(params));
params.verts = bc.lmesh->verts;
params.vertCount = bc.lmesh->nverts;
params.polys = bc.lmesh->polys;
params.polyAreas = bc.lmesh->areas;
params.polyFlags = bc.lmesh->flags;
params.polyCount = bc.lmesh->npolys;
params.nvp = DT_VERTS_PER_POLYGON;
params.walkableHeight = m_params.walkableHeight;
params.walkableRadius = m_params.walkableRadius;
params.walkableClimb = m_params.walkableClimb;
params.tileX = tile->header->tx;
params.tileY = tile->header->ty;
params.tileLayer = tile->header->tlayer;
params.cs = m_params.cs;
params.ch = m_params.ch;
params.buildBvTree = false;
dtVcopy(params.bmin, tile->header->bmin);
dtVcopy(params.bmax, tile->header->bmax);
if (m_tmproc)
{
m_tmproc->process(¶ms, bc.lmesh->areas, bc.lmesh->flags);
}
unsigned char* navData = 0;
int navDataSize = 0;
if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize))
return DT_FAILURE;
nav_data = navData;
data_size = navDataSize;
// Remove existing tile.
navmesh->removeTile(navmesh->getTileRefAt(tile->header->tx,tile->header->ty,tile->header->tlayer),0,0);
// Add new tile, or leave the location empty.
if (navData)
{
// Let the navmesh own the data.
status = navmesh->addTile(navData,navDataSize,DT_TILE_FREE_DATA,0,0);
if (dtStatusFailed(status))
{
dtFree(navData);
return status;
}
}
return DT_SUCCESS;
}