原文地址:http://blog.youkuaiyun.com/icebamboo_moyun/article/details/9391915
参考:http://bbs.youkuaiyun.com/topics/390523873
java中的几种锁:synchronized,ReentrantLock,ReentrantReadWriteLock已基本可以满足编程需求,但其粒度都太大,同一时刻只有一个线程能进入同步块,这对于某些高并发的场景并不适用。本文实现了一个基于KEY(主键)的互斥锁,具有更细的粒度,在缓存或其他基于KEY的场景中有很大的用处。下面将讲解这个锁的设计和实现
(关于这个锁的讨论贴:KeyLock讨论贴-优快云)
设想这么一个场景:转账
- private int[] accounts; // 账户数组,其索引为账户ID,内容为金额
- public boolean transfer(int from, int to, int money) {
- if (accounts[from] < money)
- return false;
- accounts[from] -= money;
- accounts[to] += money;
- return true;
- }
从from中转出金额到to中。可能同时会有很多个线程同时调用这个转账方法,为保证原子性,保证金额不会出错,必须为这个方法加个锁,防止对共享变量accounts的并发修改。
加锁后的代码如下:
- private int[] accounts; // 账户数组,其索引为账户ID,内容为金额
- private Lock lock = new ReentrantLock();
- public boolean transfer(int from, int to, int money) {
- lock.lock();
- try {
- if (accounts[from] < money)
- return false;
- accounts[from] -= money;
- accounts[to] += money;
- return true;
- } finally {
- lock.unlock();
- }
- }
好了,加锁后这个代码就能保证金额不出错了。但问题又出现了,一次只能执行一个转账过程!意思就是A给B转账的时候,C要给D转账也得等A给B转完了才能开始转。这就有点扯蛋了,就像只有一个柜台,所有人必须排队等前面的处理完了才能到自己,效率太低。
解决这种情况有一个方案:A给B转账的时候只锁定A和B的账户,使其转账期间不能再有其他针对A和B账户的操作,但其他账户的操作可以并行发生。类似于如下场景:
- public boolean transfer(int from, int to, int money) {
- lock.lock(from, to);
- try {
- if (accounts[from] < money)
- return false;
- accounts[from] -= money;
- accounts[to] += money;
- return true;
- } finally {
- lock.unlock(from, to);
- }
- }
但很显然,JAVA并没有为我们提供这样的锁(也有可能是我没找到。。。)
于是,就在这样的需求下我花了整一天来实现了这个锁——KeyLock(代码量很短,但多线程的东西真的很让人头疼)
不同于synchronized等锁,KeyLock是对所需处理的数据的KEY(主键)进行加锁,只要是对不同key操作,其就可以并行处理,大大提高了线程的并行度(最后有几个锁的对比测试)
总结下就是:对相同KEY操作的线程互斥,对不同KEY操作的线程可以并行
KeyLock有如下几个特性:
1、细粒度,高并行性
2、可重入
3、公平锁
4、加锁开销比ReentrantLock大,适用于处理耗时长、key范围大的场景
KeyLock代码如下(注释很少,因为我也不知道该怎么写清楚,能看懂就看,懒得看的直接用就行):
- public class KeyLock<K> {
- // 保存所有锁定的KEY及其信号量
- private final ConcurrentMap<K, Semaphore> map = new ConcurrentHashMap<K, Semaphore>();
- // 保存每个线程锁定的KEY及其锁定计数
- private final ThreadLocal<Map<K, LockInfo>> local = new ThreadLocal<Map<K, LockInfo>>() {
- @Override
- protected Map<K, LockInfo> initialValue() {
- return new HashMap<K, LockInfo>();
- }
- };
- /**
- * 锁定key,其他等待此key的线程将进入等待,直到调用{@link #unlock(K)}
- * 使用hashcode和equals来判断key是否相同,因此key必须实现{@link #hashCode()}和
- * {@link #equals(Object)}方法
- *
- * @param key
- */
- public void lock(K key) {
- if (key == null)
- return;
- LockInfo info = local.get().get(key);
- if (info == null) {
- Semaphore current = new Semaphore(1);
- current.acquireUninterruptibly();
- Semaphore previous = map.put(key, current);
- if (previous != null)
- previous.acquireUninterruptibly();
- local.get().put(key, new LockInfo(current));
- } else {
- info.lockCount++;
- }
- }
- /**
- * 释放key,唤醒其他等待此key的线程
- * @param key
- */
- public void unlock(K key) {
- if (key == null)
- return;
- LockInfo info = local.get().get(key);
- if (info != null && --info.lockCount == 0) {
- info.current.release();
- map.remove(key, info.current);
- local.get().remove(key);
- }
- }
- /**
- * 锁定多个key
- * 建议在调用此方法前先对keys进行排序,使用相同的锁定顺序,防止死锁发生
- * @param keys
- */
- public void lock(K[] keys) {
- if (keys == null)
- return;
- for (K key : keys) {
- lock(key);
- }
- }
- /**
- * 释放多个key
- * @param keys
- */
- public void unlock(K[] keys) {
- if (keys == null)
- return;
- for (K key : keys) {
- unlock(key);
- }
- }
- private static class LockInfo {
- private final Semaphore current;
- private int lockCount;
- private LockInfo(Semaphore current) {
- this.current = current;
- this.lockCount = 1;
- }
- }
- }
KeyLock使用示例:
- private int[] accounts;
- private KeyLock<Integer> lock = new KeyLock<Integer>();
- public boolean transfer(int from, int to, int money) {
- Integer[] keys = new Integer[] {from, to};
- Arrays.sort(keys); //对多个key进行排序,保证锁定顺序防止死锁
- lock.lock(keys);
- try {
- //处理不同的from和to的线程都可进入此同步块
- if (accounts[from] < money)
- return false;
- accounts[from] -= money;
- accounts[to] += money;
- return true;
- } finally {
- lock.unlock(keys);
- }
- }
好,工具有了,接下来就是测试了,为了测出并行度,我把转账过程延长了,加了个sleep(2),使每个转账过程至少要花2毫秒(这只是个demo,真实环境下对数据库操作也很费时)。
测试代码如下:
- //场景:多线程并发转账
- public class Test {
- private final int[] account; // 账户数组,其索引为账户ID,内容为金额
- public Test(int count, int money) {
- account = new int[count];
- Arrays.fill(account, money);
- }
- boolean transfer(int from, int to, int money) {
- if (account[from] < money)
- return false;
- account[from] -= money;
- try {
- Thread.sleep(2);
- } catch (Exception e) {
- }
- account[to] += money;
- return true;
- }
- int getAmount() {
- int result = 0;
- for (int m : account)
- result += m;
- return result;
- }
- public static void main(String[] args) throws Exception {
- int count = 100; //账户个数
- int money = 10000; //账户初始金额
- int threadNum = 8; //转账线程数
- int number = 10000; //转账次数
- int maxMoney = 1000; //随机转账最大金额
- Test test = new Test(count, money);
- //不加锁
- // Runner runner = test.new NonLockRunner(maxMoney, number);
- //加synchronized锁
- // Runner runner = test.new SynchronizedRunner(maxMoney, number);
- //加ReentrantLock锁
- // Runner runner = test.new ReentrantLockRunner(maxMoney, number);
- //加KeyLock锁
- Runner runner = test.new KeyLockRunner(maxMoney, number);
- Thread[] threads = new Thread[threadNum];
- for (int i = 0; i < threadNum; i++)
- threads[i] = new Thread(runner, "thread-" + i);
- long begin = System.currentTimeMillis();
- for (Thread t : threads)
- t.start();
- for (Thread t : threads)
- t.join();
- long time = System.currentTimeMillis() - begin;
- System.out.println("类型:" + runner.getClass().getSimpleName());
- System.out.printf("耗时:%dms\n", time);
- System.out.printf("初始总金额:%d\n", count * money);
- System.out.printf("终止总金额:%d\n", test.getAmount());
- }
- // 转账任务
- abstract class Runner implements Runnable {
- final int maxMoney;
- final int number;
- private final Random random = new Random();
- private final AtomicInteger count = new AtomicInteger();
- Runner(int maxMoney, int number) {
- this.maxMoney = maxMoney;
- this.number = number;
- }
- @Override
- public void run() {
- while(count.getAndIncrement() < number) {
- int from = random.nextInt(account.length);
- int to;
- while ((to = random.nextInt(account.length)) == from)
- ;
- int money = random.nextInt(maxMoney);
- doTransfer(from, to, money);
- }
- }
- abstract void doTransfer(int from, int to, int money);
- }
- // 不加锁的转账
- class NonLockRunner extends Runner {
- NonLockRunner(int maxMoney, int number) {
- super(maxMoney, number);
- }
- @Override
- void doTransfer(int from, int to, int money) {
- transfer(from, to, money);
- }
- }
- // synchronized的转账
- class SynchronizedRunner extends Runner {
- SynchronizedRunner(int maxMoney, int number) {
- super(maxMoney, number);
- }
- @Override
- synchronized void doTransfer(int from, int to, int money) {
- transfer(from, to, money);
- }
- }
- // ReentrantLock的转账
- class ReentrantLockRunner extends Runner {
- private final ReentrantLock lock = new ReentrantLock();
- ReentrantLockRunner(int maxMoney, int number) {
- super(maxMoney, number);
- }
- @Override
- void doTransfer(int from, int to, int money) {
- lock.lock();
- try {
- transfer(from, to, money);
- } finally {
- lock.unlock();
- }
- }
- }
- // KeyLock的转账
- class KeyLockRunner extends Runner {
- private final KeyLock<Integer> lock = new KeyLock<Integer>();
- KeyLockRunner(int maxMoney, int number) {
- super(maxMoney, number);
- }
- @Override
- void doTransfer(int from, int to, int money) {
- Integer[] keys = new Integer[] {from, to};
- Arrays.sort(keys);
- lock.lock(keys);
- try {
- transfer(from, to, money);
- } finally {
- lock.unlock(keys);
- }
- }
- }
- }
(8线程对100个账户随机转账总共10000次):
类型:NonLockRunner(不加锁)
耗时:2482ms
初始总金额:1000000
终止总金额:998906(无法保证原子性)
类型:SynchronizedRunner(加synchronized锁)
耗时:20872ms
初始总金额:1000000
终止总金额:1000000
类型:ReentrantLockRunner(加ReentrantLock锁)
耗时:21588ms
初始总金额:1000000
终止总金额:1000000
类型:KeyLockRunner(加KeyLock锁)
耗时:2831ms
初始总金额:1000000
终止总金额:1000000
查看文章的评论,发现有人对此进行了相应的整理,整理内容参考:
http://blog.youkuaiyun.com/raistlic/article/details/9612571