校验方法汇总

CRC校验

CRC计算逻辑
原理:将数据除以一个除数(可以表示为多项式,如1001表示为 x^ 3+1,1011表示为x^3+x+1),计算所得的余数作为校验值追加到数据末尾

/*
 * 方法1:简单的除法运算
寄存器清零
数据最右边补齐W位0 // W是CRC校验值的位数
when(还有数据){
    左移寄存器1位,读取数据的下一位到寄存器的bit 0
    if (左移寄存器时出现溢出&值为1){                    // 默认当除数溢出,且溢出值与被除数的最高位均为1时(最高位符号位为1),则可以进行减法运算(相当于除了一次,得到了一个余数)
        寄存器 ^= poly;            //被除数和除数做减法时,需要使用无进位的减法,即XOR运算  
    }
}
寄存器的值就是校验值了
--------  这种方法由于按位进行计算,效率较低   --------  

*方法2:提前计算出除数在每一次除法运算的值,存入表中,计算时直接查表
0011 0000    // 补W=4个零 (值1)
,,10 011     // poly对齐  (值2)
---------
0001 0110    
,,,1 0011    // poly对齐  (值3)
---------
0000 0101    // CRC值     (值4)   

值2和值3可以提前算出,因为就相当于对除数提前进行移位运算

CRC值 = 值1 ^ 值2  ^ 值3
  = 值1 ^ (值2  ^ 值3)
  = 值1 ^ 查表值            // 令 `查表值` = 值2 ^ 值3

*/
public sealed class Crc32 : HashAlgorithm
{

public const uint DefaultPolynomial = 0xEDB88320;           // 默认除数多项式,最高位符号位为1,是为了在进行除数运算时,对齐符号位
public const uint DefaultSeed = 0xffffffffu;                // 初始化一个足够大的寄存器(通常与CRC的位宽相同),将其填充为全1或全0。此处使用32位CRC    
private static uint[] _defaultTable;						//  除数的移位表

private readonly uint _seed;
private readonly uint[] _table;
private uint _hash;

public Crc32()
    : this(DefaultPolynomial, DefaultSeed)
{
}

public Crc32(uint polynomial, uint seed)
{
    _table = InitializeTable(polynomial);
    _seed = seed;
    _hash = seed;
}

public override void Initialize()
{
    _hash = _seed;
}

protected override void HashCore(byte[] array, int ibStart, int cbSize)
{
    _hash = CalculateHash(_table, _hash, array, ibStart, cbSize);
}

protected override byte[] HashFinal()
{
    var hashBuffer = UInt32ToBigEndianBytes(~_hash);
    HashValue = hashBuffer;
    return hashBuffer;
}

public override int HashSize => 32;

public static uint Compute(byte[] buffer)
{
    return Compute(DefaultSeed, buffer);
}

public static uint Compute(uint seed, byte[] buffer)
{
    return Compute(DefaultPolynomial, seed, buffer);
}

public static uint Compute(uint polynomial, uint seed, byte[] buffer)
{
    return ~CalculateHash(InitializeTable(polynomial), seed, buffer, 0, buffer.Length);
}

/// <summary>
/// 构建多项式移位表,共包括0-255次移位,
/// </summary>
/// <param name="polynomial"></param>
/// <returns></returns>

private static uint[] InitializeTable(uint polynomial)
{
    if (polynomial == DefaultPolynomial && _defaultTable != null)
        return _defaultTable;

    var createTable = new uint[256];
    for (var i = 0; i < 256; i++)
    {
        var entry = (uint)i;
        for (var j = 0; j < 8; j++)
            if ((entry & 1) == 1)
                entry = (entry >> 1) ^ polynomial;
            else
                entry >>= 1;
        createTable[i] = entry;
    }

    if (polynomial == DefaultPolynomial)
        _defaultTable = createTable;

    return createTable;
}

private static uint CalculateHash(uint[] table, uint seed, byte[] buffer, int start, int size)
{
    var hash = seed;
    for (var i = start; i < start + size; i++)
        hash = (hash >> 8) ^ table[buffer[i] ^ (hash & 0xff)];
    return hash;
}

/// <summary>
/// 小端转为大端
/// </summary>
/// <param name="uint32"></param>
/// <returns></returns>
private static byte[] UInt32ToBigEndianBytes(uint uint32)
{
    var result = BitConverter.GetBytes(uint32);

    if (BitConverter.IsLittleEndian)
        Array.Reverse(result);

    return result;
}
}
内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值