题解 :这个题目是一颗完全二叉树,根节点为1号节点, 在进行处理之前,我们可以对每个节点的子树节点以距离为关键字排序,思路类似于归并排序 (从底部向上面一层一层的排序) 当然排序之前我们需要把距离 0 加入这个排序的数组 (因为自身也可以加入进去,然后我们求一个前缀和,为了后面计算的方便) 然后进行计算 ,怎么算呢,每次以当前节点为根节点的的子树 (只算子孙节点对答案的贡献)就是二分控制距离就可以了,然后向自己的父亲节点走,再计算父亲节点为根对答案的贡献依次知道到控制距离小于等于0就可以了 输出答案就好了
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <set>
#include <vector>
#define ll long long
using namespace std;
const int maxn = 1e6 + 10;
ll len[maxn] = {0};
vector <ll> v[maxn];
vector <ll> sum[maxn];
ll temp[maxn] = {0};
void merge (int node,int son) {
int sz1 = v[node].size(),sz2 = v[son].size();
ll length = len[son];
int i = 0,j = 0,k = 0;
while (i < sz1 && j < sz2) {
if (v[node][i] < v[son][j] + length) {
temp[k ++] = v[node][i ++];
}
else {
temp[k ++] = v[son][j ++] + length;
}
}
while (i < sz1) temp[k ++] = v[node][i ++];
while (j < sz2) temp[k ++] = v[son][j ++] + length;
for (i = 0;i < sz1; ++ i) v[node][i] = temp[i];
for (i = sz1;i < k; ++ i) v[node].push_back(temp[i]);
}
ll cal (int node,ll val) {
if (val <= 0) return 0;
ll pos = -1;
int mid;
int l = 0,r = v[node].size() - 1;
while (r >= l) {
mid = (l + r) >> 1;
if (v[node][mid] <= val) {
l = mid + 1;
pos = mid;
}
else {
r = mid - 1;
}
}
if (pos < 0) return 0;
return val * (pos + 1ll) - sum[node][pos];
}
int main () {
ios_base :: sync_with_stdio(false);
int n,Q;
cin >> n >> Q;
for (int i = 2;i <= n; ++ i) cin >> len[i];
for (int i = 1;i <= n; ++ i) v[i].push_back(0ll);
for (int i = n;i > 1; -- i) merge (i / 2,i);
for (int i = 1;i <= n; ++ i) {
int k = v[i].size();
sum[i].push_back(v[i][0]);
for (int j = 1;j < k; ++ j) {
sum[i].push_back(sum[i][j - 1] + v[i][j]);
}
}
while (Q --) {
int id,lim;
cin >> id >> lim;
ll ans = 0;
for (int las = 0;id;las = id,id = id / 2) {
if (lim <= 0) break;
ans += lim;
int l = id << 1,r = (id << 1) | 1;
if (l != las && l <= n) {
ans += cal (l,lim - len[l]);
}
if (r != las && r <= n) {
ans += cal (r,lim - len[r]);
}
lim -= len[id];
}
cout << ans << endl;
}
return 0;
}