读书笔记 - 机器学习实战 - 10 k-均值聚类

本文介绍了k-均值聚类作为无监督学习算法的原理和应用,包括k-均值的优势与局限性,以及如何通过后处理改进聚类性能。此外,还探讨了二分k-均值算法来解决k-均值可能存在的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

10 kkk-均值聚类(Grouping unlabeled items using k-means clustering)

聚类(clustering):一种无监督学习(unsupervised learning)算法,自动生成相似样本簇(cluster)。

kkk-均值(kkk-means):生成kkk个簇,各簇中心为簇内样本均值。

聚类也称非监督分类(unsupervised classification),其输出与分类(classification)相同,但没有预定义类别。

聚类分析将相似(similar)样本归类到同一簇中,非相似(dissimilar)样本归类到不同簇中。相似性(similarity)取决于相似性测度(similarity measurement)。

import matplotlib.pyplot as plt
import numpy as np

random_seed = 13
np.random.seed(seed=random_seed)

10.1 kkk-均值聚类算法

kkk-均值聚类(kkk-means clustering):

优点:易于使用

缺点:收敛于局部极小值(converge at local minima);大规模数据集上运行很慢

适用范围:数值

给定数据集,kkk-均值从中寻找kkk个簇,kkk为用户定义的超参数。各簇用簇中心(centroid)表示。

kkk-均值伪代码:

(随机)创建k个初始中心
当任意样本点的簇类别改变时:
    遍历数据集:
        遍历簇中心:
            计算簇中心与样本点距离
        将样本点分配距离最近的簇类别
    遍历所有簇:
        计算各簇均值,将簇均值分配给簇中心

kkk-均值聚类步骤:

  1. 收集数据
  2. 准备:数值型数据,标称值需映射为二进制数值
  3. 分析:
  4. 训练:
  5. 测试:应用聚类算法、检查结果,测量定量误差
  6. 使用:
# Listing 10.1 k-means support functions

def loadDataSet(fileName):
    
    dataMat = []
    with open(fileName, "r") as fr:
        for line in fr.readlines():
            curLine = line.strip().split("\t")
            fltLine = list(map(float, curLine))
            dataMat.append(fltLine)
            
    return dataMat


def distEclud(vecA, vecB):
    
    return np.sqrt(np.sum(np.power(vecA - vecB, 2)))


def randCent(dataSet, k):
    
    n = np.shape(dataSet)[1]
    centroids = np.matrix(np.zeros((k, n)))
    
    for j in range(n):
        # create cluster centroids
        minJ = np.min(dataSet[:, j])
        rangeJ = float(np.max(dataSet[:, j]) - minJ)
        centroids[:, j] = minJ + rangeJ * np.random.rand(k, 1)
        
    return centroids

datMat = np.matrix(loadDataSet("./testSet.txt"))
# 最大、最小值
print(np.min(datMat[:, 0]))
print(np.min(datMat[:, 1]))
print(np.max(datMat[:, 0]))
print(np.max(datMat[:, 1]))

# 随机中心
print(randCent(datMat, 2))

# 距离测度
print(distEclud(datMat[0], datMat[1]))

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.scatter(datMat[:, 0].A.ravel(),
           datMat[:, 1].A.ravel(),
           label="samples")
plt.legend(loc="best")
plt.show()
-5.379713
-4.232586
4.838138
5.1904
[[ 2.56673435  3.53457907]
 [-2.95255221  4.86765517]]
5.184632816681332

在这里插入图片描述

# Listing 10.2 the k-means clustering algorithm
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    
    m = np.shape(dataSet)[0]
    # cluster assignment, col_0: cluster index, col_1: dist^2 
    clusterAssment = np.matrix(np.zeros((m, 2)))
    centroids = randCent(dataSet, k)
    clusterChanged = True
    
    while clusterChanged:
        clusterChanged = False
        
        for i in range(m):
            minDist = np.inf
            minIndex = -1
            
            # find the closest centroid
            for j in range(k):
                distJI = distMeas(centroids[j, :], dataSet[i, :])
                if distJI < minDist:
                    minDist = distJI
                    minIndex = j
                    
            if clusterAssment[i, 0] != minIndex:
                clusterChanged = True
                clusterAssment[i, :] = minIndex, minDist ** 2
                
        print(centroids)
        
        # update centroid location
        for cent in range(k):
            ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0].A == cent)[0]]
            centroids[cent, :] = np.mean(ptsInClust, axis=0)
            
    return centroids, clusterAssment

myCentroids, clustAssing =  kMeans(datMat, 4)

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.scatter(datMat[:, 0].A.ravel(),
           datMat[:, 1].A.ravel(),
           c=clustAssing[:, 0].A.ravel(),
           label="samples")
ax.scatter(myCentroids[:, 0].A.ravel(),
           myCentroids[:, 1].A.ravel(),
           s=80,
           marker="x",
           c="red",
           label="centroids")
plt.legend(loc="best")
plt.show()
[[ 4.55818026  1.81332757]
 [-0.74643615  2.57098167]
 [ 0.84339214 -3.90243732]
 [ 2.54450137 -1.42030081]]
[[ 2.942346    2.80047613]
 [-1.6334182   3.03655888]
 [-1.76738661 -3.13626093]
 [ 3.15816942 -2.14680933]]
[[ 2.6265299   3.10868015]
 [-2.46154315  2.78737555]
 [-3.01169468 -3.01238673]
 [ 3.03713839 -2.62802833]]
[[ 2.6265299   3.10868015]
 [-2.46154315  2.78737555]
 [-3.38237045 -2.9473363 ]
 [ 2.80293085 -2.7315146 ]]

在这里插入图片描述

10.2 后处理(Improving cluster performance with postprocessing)

kkk-均值聚类收敛到局部极小值点,导致聚类结果不正确:

在这里插入图片描述

平方误差和(sum of squared error,SSE)

簇分裂(cluster-splitting)降低SSE:选取SSE最大的簇进行分裂(对该簇内的点进行2-均值聚类),然后再选取2个簇合并。

datMat3 = np.matrix(loadDataSet("testSet2.txt"))

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.scatter(datMat3[:, 0].A.ravel(),
           datMat3[:, 1].A.ravel(),
           label="samples")
plt.legend(loc="best")
plt.show()

在这里插入图片描述

10.3 二分kkk-均值(Bisecting kkk-means)

二分kkk-均值(bisecting kkk-means)伪代码:

初始化,将所有样本点聚类到同一簇
当簇总数小于k时:
    遍历簇:
        计算总误差
        对当前簇进行2-均值聚类,计算总误差
    选择使SSE最小的簇分裂
# Listing 10.3 the bisecting k-means clustering algorithm

def biKmeans(dataSet, k, distMeas=distEclud):
    
    m = np.shape(dataSet)[0]
    clusterAssment = np.matrix(np.zeros((m, 2)))
    
    # initially create one cluster
    centroid0 = np.mean(dataSet, axis=0).tolist()[0]
    centList = [centroid0]
    
    for j in range(m):
        clusterAssment[j, 1] = distMeas(np.matrix(centroid0), dataSet[j, :]) ** 2
        
    while (len(centList) < k):
        lowestSSE = np.inf
        for i in range(len(centList)):
            # try splitting every cluster
            ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:, 0].A == i)[0], :]
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            
            sseSplit = np.sum(splitClustAss[:, 1])
            sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:, 0].A != i)[0], 1])
            
            print("sseSplit: {}, and notSplit: {}".format(sseSplit, sseNotSplit))
            
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
                
        # update the cluster assignments
        bestClustAss[np.nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList)
        bestClustAss[np.nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit
        print("the bestCentToSplit is: {}".format(bestCentToSplit))
        print("the len of bestClustAss is: {}".format(len(bestClustAss)))
        
        print(centList)
        centList[bestCentToSplit] = bestNewCents[0, :].A.ravel()
        centList.append(bestNewCents[1, :].A.ravel())
        clusterAssment[np.nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClustAss
        
    return np.matrix(centList), clusterAssment

centList, myNewAssments = biKmeans(datMat3, 3)

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.scatter(datMat3[:, 0].A.ravel(),
           datMat3[:, 1].A.ravel(),
           c=myNewAssments[:, 0].A.ravel(),
           label="samples")
ax.scatter(centList[:, 0].A.ravel(),
           centList[:, 1].A.ravel(),
           s=80,
           marker="x",
           c="red",
           label="centroids")
plt.legend(loc="best")
plt.show()
[[ 2.46075605  2.05403444]
 [-4.18161624  0.80409831]]
[[ 2.29222778  1.72074989]
 [-2.16222773  0.81998667]]
[[ 2.93386365  3.12782785]
 [-1.70351595  0.27408125]]
sseSplit: 656.6855191745456, and notSplit: 0.0
the bestCentToSplit is: 0
the len of bestClustAss is: 60
[[-0.15772275000000002, 1.2253301166666664]]
[[1.62610908 1.52989103]
 [1.49043987 1.11553377]]
[[2.95977168 3.26903847]
 [2.441611   0.444826  ]]
sseSplit: 1.3545754399028473, and notSplit: 656.6855191745456
[[ 0.42631551 -2.01274686]
 [-0.96733016  0.99114804]]
[[-0.45965615 -2.7782156 ]
 [-2.94737575  3.3263781 ]]
sseSplit: 225.54055003224968, and notSplit: 0.0
the bestCentToSplit is: 1
the len of bestClustAss is: 40
[array([2.93386365, 3.12782785]), array([-1.70351595,  0.27408125])]

在这里插入图片描述


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值