聚类-k均值算法

在无监督学习中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。
聚类试图把数据集中的样本划分为若干个通常是不想交的子集。每个子集称为一个簇,通过这样的一个划分,每个簇可能对应一些潜在的类别。

K-means算法是最简单的一种聚类算法。算法的目的是使各个样本与所在类均值的误差平方和达到最小(这也是评价K-means算法最后聚类效果的评价标准)

K-means聚类算法的一般步骤:

  1. 初始化。输入基因表达矩阵作为对象集X,输入指定聚类类数N,并在X中随机选取N<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值