Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8649 | Accepted: 3633 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
快速幂求解,题看懂很容易,但是我的英语水平太差劲了,没有看懂题意。费马定理。
题意:费马定理,费费马定理马小定理:若p是素数且a是正整数,那么a^p=a(mod p)若a是正整数,p是合数且满足a^p=a(mod p),那么称p为以a为基的伪素数。给你p和a,让你判断p是不是伪素数。#include<cstdio> #include<cstring> #include<cmath> __int64 sushu(__int64 n)//判断是否是素数
{ __int64 i; for(i=2;i*i<n;i++) { if(n%i==0) return 0; } return 1; } __int64 qpow(__int64 a,__int64 b,__int64 c)//快速幂求解
{ __int64 ans=1,base=a; while(b) { if(b&1) { ans=(base*ans)%c; } base=(base*base)%c; b=b/2; } return ans; } int main() { __int64 p,a,l; while(scanf("%I64d%I64d",&p,&a)&&(p||a)) { if(sushu(p)) printf("no\n"); else { l=qpow(a,p,p); if(a%p==l) printf("yes\n"); else printf("no\n"); } } return 0; }