linux-kernel-cpufreq_stats.c

本文介绍了一个用于导出CPufreq统计信息的驱动程序,该程序通过sysfs文件系统实现,适用于Intel等平台。

/*
 *  drivers/cpufreq/cpufreq_stats.c
 *
 *  Copyright (C) 2003-2004 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *  (C) 2004 Zou Nan hai <nanhai.zou@intel.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/sysfs.h>
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/percpu.h>
#include <linux/kobject.h>
#include <linux/spinlock.h>
#include <linux/notifier.h>
#include <asm/cputime.h>
#ifdef CONFIG_BL_SWITCHER
#include <asm/bL_switcher.h>
#endif

static spinlock_t cpufreq_stats_lock;

struct cpufreq_stats {
 unsigned int cpu;
 unsigned int total_trans;
 unsigned long long  last_time;
 unsigned int max_state;
 unsigned int state_num;
 unsigned int last_index;
 u64 *time_in_state;
 unsigned int *freq_table;
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
 unsigned int *trans_table;
#endif
};

static DEFINE_PER_CPU(struct cpufreq_stats *, cpufreq_stats_table);

struct cpufreq_stats_attribute {
 struct attribute attr;
 ssize_t(*show) (struct cpufreq_stats *, char *);
};

static int cpufreq_stats_update(unsigned int cpu)
{
 struct cpufreq_stats *stat;
 unsigned long long cur_time;

 cur_time = get_jiffies_64();
 spin_lock(&cpufreq_stats_lock);
 stat = per_cpu(cpufreq_stats_table, cpu);
 if (stat->time_in_state)
  stat->time_in_state[stat->last_index] +=
   cur_time - stat->last_time;
 stat->last_time = cur_time;
 spin_unlock(&cpufreq_stats_lock);
 return 0;
}

static ssize_t show_total_trans(struct cpufreq_policy *policy, char *buf)
{
 struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
 if (!stat)
  return 0;
 return sprintf(buf, "%d\n",
   per_cpu(cpufreq_stats_table, stat->cpu)->total_trans);
}

static ssize_t show_time_in_state(struct cpufreq_policy *policy, char *buf)
{
 ssize_t len = 0;
 int i;
 struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
 if (!stat)
  return 0;
 cpufreq_stats_update(stat->cpu);
 for (i = 0; i < stat->state_num; i++) {
  len += sprintf(buf + len, "%u %llu\n", stat->freq_table[i],
   (unsigned long long)
   cputime64_to_clock_t(stat->time_in_state[i]));
 }
 return len;
}

#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
static ssize_t show_trans_table(struct cpufreq_policy *policy, char *buf)
{
 ssize_t len = 0;
 int i, j;

 struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, policy->cpu);
 if (!stat)
  return 0;
 cpufreq_stats_update(stat->cpu);
 len += snprintf(buf + len, PAGE_SIZE - len, "   From  :    To\n");
 len += snprintf(buf + len, PAGE_SIZE - len, "         : ");
 for (i = 0; i < stat->state_num; i++) {
  if (len >= PAGE_SIZE)
   break;
  len += snprintf(buf + len, PAGE_SIZE - len, "%9u ",
    stat->freq_table[i]);
 }
 if (len >= PAGE_SIZE)
  return PAGE_SIZE;

 len += snprintf(buf + len, PAGE_SIZE - len, "\n");

 for (i = 0; i < stat->state_num; i++) {
  if (len >= PAGE_SIZE)
   break;

  len += snprintf(buf + len, PAGE_SIZE - len, "%9u: ",
    stat->freq_table[i]);

  for (j = 0; j < stat->state_num; j++)   {
   if (len >= PAGE_SIZE)
    break;
   len += snprintf(buf + len, PAGE_SIZE - len, "%9u ",
     stat->trans_table[i*stat->max_state+j]);
  }
  if (len >= PAGE_SIZE)
   break;
  len += snprintf(buf + len, PAGE_SIZE - len, "\n");
 }
 if (len >= PAGE_SIZE)
  return PAGE_SIZE;
 return len;
}
cpufreq_freq_attr_ro(trans_table);
#endif

cpufreq_freq_attr_ro(total_trans);
cpufreq_freq_attr_ro(time_in_state);

static struct attribute *default_attrs[] = {
 &total_trans.attr,
 &time_in_state.attr,
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
 &trans_table.attr,
#endif
 NULL
};
static struct attribute_group stats_attr_group = {
 .attrs = default_attrs,
 .name = "stats"
};

static int freq_table_get_index(struct cpufreq_stats *stat, unsigned int freq)
{
 int index;
 for (index = 0; index < stat->max_state; index++)
  if (stat->freq_table[index] == freq)
   return index;
#if defined CONFIG_HISI_3635_FPGA
 return 0;
#endif
 return -1;
}

/* should be called late in the CPU removal sequence so that the stats
 * memory is still available in case someone tries to use it.
 */
static void cpufreq_stats_free_table(unsigned int cpu)
{
 struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table, cpu);

 if (stat) {
  pr_debug("%s: Free stat table\n", __func__);
  kfree(stat->time_in_state);
  kfree(stat);
  per_cpu(cpufreq_stats_table, cpu) = NULL;
 }
}

/* must be called early in the CPU removal sequence (before
 * cpufreq_remove_dev) so that policy is still valid.
 */
static void cpufreq_stats_free_sysfs(unsigned int cpu)
{
 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);

 if (!policy)
  return;

 if (!cpufreq_frequency_get_table(cpu))
  goto put_ref;

 if (!policy_is_shared(policy)) {
  pr_debug("%s: Free sysfs stat\n", __func__);
  sysfs_remove_group(&policy->kobj, &stats_attr_group);
 }

put_ref:
 cpufreq_cpu_put(policy);
}

static int cpufreq_stats_create_table(struct cpufreq_policy *policy,
  struct cpufreq_frequency_table *table)
{
 unsigned int i, j, count = 0, ret = 0;
 struct cpufreq_stats *stat;
 struct cpufreq_policy *data;
 unsigned int alloc_size;
 unsigned int cpu = policy->cpu;
 if (per_cpu(cpufreq_stats_table, cpu))
  return -EBUSY;
 stat = kzalloc(sizeof(struct cpufreq_stats), GFP_KERNEL);
 if ((stat) == NULL)
  return -ENOMEM;

 data = cpufreq_cpu_get(cpu);
 if (data == NULL) {
  ret = -EINVAL;
  goto error_get_fail;
 }

 ret = sysfs_create_group(&data->kobj, &stats_attr_group);
 if (ret)
  goto error_out;

 stat->cpu = cpu;
 per_cpu(cpufreq_stats_table, cpu) = stat;

 for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
  unsigned int freq = table[i].frequency;
  if (freq == CPUFREQ_ENTRY_INVALID)
   continue;
  count++;
 }

 alloc_size = count * sizeof(int) + count * sizeof(u64);

#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
 alloc_size += count * count * sizeof(int);
#endif
 stat->max_state = count;
 stat->time_in_state = kzalloc(alloc_size, GFP_KERNEL);
 if (!stat->time_in_state) {
  ret = -ENOMEM;
  goto error_out;
 }
 stat->freq_table = (unsigned int *)(stat->time_in_state + count);

#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
 stat->trans_table = stat->freq_table + count;
#endif
 j = 0;
 for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
  unsigned int freq = table[i].frequency;
  if (freq == CPUFREQ_ENTRY_INVALID)
   continue;
  if (freq_table_get_index(stat, freq) == -1)
   stat->freq_table[j++] = freq;
 }
 stat->state_num = j;
 spin_lock(&cpufreq_stats_lock);
 stat->last_time = get_jiffies_64();
 stat->last_index = freq_table_get_index(stat, policy->cur);
 spin_unlock(&cpufreq_stats_lock);
 cpufreq_cpu_put(data);
 return 0;
error_out:
 cpufreq_cpu_put(data);
error_get_fail:
 kfree(stat);
 per_cpu(cpufreq_stats_table, cpu) = NULL;
 return ret;
}

static void cpufreq_stats_update_policy_cpu(struct cpufreq_policy *policy)
{
 struct cpufreq_stats *stat = per_cpu(cpufreq_stats_table,
   policy->last_cpu);

 pr_debug("Updating stats_table for new_cpu %u from last_cpu %u\n",
   policy->cpu, policy->last_cpu);
 per_cpu(cpufreq_stats_table, policy->cpu) = per_cpu(cpufreq_stats_table,
   policy->last_cpu);
 per_cpu(cpufreq_stats_table, policy->last_cpu) = NULL;
 stat->cpu = policy->cpu;
}

static int cpufreq_stat_notifier_policy(struct notifier_block *nb,
  unsigned long val, void *data)
{
 int ret;
 struct cpufreq_policy *policy = data;
 struct cpufreq_frequency_table *table;
 unsigned int cpu = policy->cpu;

 if (val == CPUFREQ_UPDATE_POLICY_CPU) {
  cpufreq_stats_update_policy_cpu(policy);
  return 0;
 }

 if (val != CPUFREQ_NOTIFY)
  return 0;
 table = cpufreq_frequency_get_table(cpu);
 if (!table)
  return 0;
 ret = cpufreq_stats_create_table(policy, table);
 if (ret)
  return ret;
 return 0;
}

static int cpufreq_stat_notifier_trans(struct notifier_block *nb,
  unsigned long val, void *data)
{
 struct cpufreq_freqs *freq = data;
 struct cpufreq_stats *stat;
 int old_index, new_index;

 if (val != CPUFREQ_POSTCHANGE)
  return 0;

 stat = per_cpu(cpufreq_stats_table, freq->cpu);
 if (!stat)
  return 0;

 old_index = stat->last_index;
 new_index = freq_table_get_index(stat, freq->new);

 /* We can't do stat->time_in_state[-1]= .. */
 if (old_index == -1 || new_index == -1)
  return 0;

 cpufreq_stats_update(freq->cpu);

 if (old_index == new_index)
  return 0;

 spin_lock(&cpufreq_stats_lock);
 stat->last_index = new_index;
#ifdef CONFIG_CPU_FREQ_STAT_DETAILS
 stat->trans_table[old_index * stat->max_state + new_index]++;
#endif
 stat->total_trans++;
 spin_unlock(&cpufreq_stats_lock);
 return 0;
}

static int cpufreq_stats_create_table_cpu(unsigned int cpu)
{
 struct cpufreq_policy *policy;
 struct cpufreq_frequency_table *table;
 int ret = -ENODEV;

 policy = cpufreq_cpu_get(cpu);
 if (!policy)
  return -ENODEV;

 table = cpufreq_frequency_get_table(cpu);
 if (!table)
  goto out;

 ret = cpufreq_stats_create_table(policy, table);

out:
 cpufreq_cpu_put(policy);
 return ret;
}

static int __cpuinit cpufreq_stat_cpu_callback(struct notifier_block *nfb,
            unsigned long action,
            void *hcpu)
{
 unsigned int cpu = (unsigned long)hcpu;

 switch (action) {
 case CPU_ONLINE:
 case CPU_ONLINE_FROZEN:
  cpufreq_update_policy(cpu);
  break;
 case CPU_DOWN_PREPARE:
 case CPU_DOWN_PREPARE_FROZEN:
  cpufreq_stats_free_sysfs(cpu);
  break;
 case CPU_DEAD:
 case CPU_DEAD_FROZEN:
  cpufreq_stats_free_table(cpu);
  break;
 case CPU_DOWN_FAILED:
 case CPU_DOWN_FAILED_FROZEN:
  cpufreq_stats_create_table_cpu(cpu);
  break;
 }
 return NOTIFY_OK;
}

/* priority=1 so this will get called before cpufreq_remove_dev */
static struct notifier_block cpufreq_stat_cpu_notifier __refdata = {
 .notifier_call = cpufreq_stat_cpu_callback,
 .priority = 1,
};

static struct notifier_block notifier_policy_block = {
 .notifier_call = cpufreq_stat_notifier_policy
};

static struct notifier_block notifier_trans_block = {
 .notifier_call = cpufreq_stat_notifier_trans
};

static int cpufreq_stats_setup(void)
{
 int ret;
 unsigned int cpu;

 spin_lock_init(&cpufreq_stats_lock);
 ret = cpufreq_register_notifier(&notifier_policy_block,
    CPUFREQ_POLICY_NOTIFIER);
 if (ret)
  return ret;

 register_hotcpu_notifier(&cpufreq_stat_cpu_notifier);
 for_each_online_cpu(cpu)
  cpufreq_update_policy(cpu);

 ret = cpufreq_register_notifier(&notifier_trans_block,
    CPUFREQ_TRANSITION_NOTIFIER);
 if (ret) {
  cpufreq_unregister_notifier(&notifier_policy_block,
    CPUFREQ_POLICY_NOTIFIER);
  unregister_hotcpu_notifier(&cpufreq_stat_cpu_notifier);
  for_each_online_cpu(cpu)
   cpufreq_stats_free_table(cpu);
  return ret;
 }

 return 0;
}

static void cpufreq_stats_cleanup(void)
{
 unsigned int cpu;

 cpufreq_unregister_notifier(&notifier_policy_block,
   CPUFREQ_POLICY_NOTIFIER);
 cpufreq_unregister_notifier(&notifier_trans_block,
   CPUFREQ_TRANSITION_NOTIFIER);
 unregister_hotcpu_notifier(&cpufreq_stat_cpu_notifier);
 for_each_online_cpu(cpu) {
  cpufreq_stats_free_table(cpu);
  cpufreq_stats_free_sysfs(cpu);
 }
}

#ifdef CONFIG_BL_SWITCHER
static int cpufreq_stats_switcher_notifier(struct notifier_block *nfb,
     unsigned long action, void *_arg)
{
 switch (action) {
 case BL_NOTIFY_PRE_ENABLE:
 case BL_NOTIFY_PRE_DISABLE:
  cpufreq_stats_cleanup();
  break;

 case BL_NOTIFY_POST_ENABLE:
 case BL_NOTIFY_POST_DISABLE:
  cpufreq_stats_setup();
  break;

 default:
  return NOTIFY_DONE;
 }

 return NOTIFY_OK;
}

static struct notifier_block switcher_notifier = {
 .notifier_call = cpufreq_stats_switcher_notifier,
};
#endif

static int __init cpufreq_stats_init(void)
{
 int ret;
 spin_lock_init(&cpufreq_stats_lock);

 ret = cpufreq_stats_setup();
#ifdef CONFIG_BL_SWITCHER
 if (!ret)
  bL_switcher_register_notifier(&switcher_notifier);
#endif
 return ret;
}

static void __exit cpufreq_stats_exit(void)
{
#ifdef CONFIG_BL_SWITCHER
 bL_switcher_unregister_notifier(&switcher_notifier);
#endif
 cpufreq_stats_cleanup();
}

MODULE_AUTHOR("Zou Nan hai <nanhai.zou@intel.com>");
MODULE_DESCRIPTION("'cpufreq_stats' - A driver to export cpufreq stats "
    "through sysfs filesystem");
MODULE_LICENSE("GPL");

module_init(cpufreq_stats_init);
module_exit(cpufreq_stats_exit);

import tkinter as tk import time import sys import os import platform import ctypes import csv import threading import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from ctypes import windll, wintypes from collections import defaultdict from datetime import datetime class HighPrecisionTimer: """高精度计时器基类""" def __init__(self): self.start_time = 0 self.total_elapsed = 0 self.running = False self.interrupt_count = 0 # 中断计数器 self.core_usage = defaultdict(float) # 各核心使用时间 def start(self): """开始计时""" if not self.running: self.start_time = self.current_time() self.running = True def stop(self): """停止计时""" if self.running: elapsed = self.current_time() - self.start_time self.total_elapsed += elapsed self.update_core_usage(elapsed) # 更新核心使用情况 self.running = False def reset(self): """重置计时器""" self.total_elapsed = 0 self.running = False self.interrupt_count = 0 self.core_usage.clear() def current_elapsed(self): """获取当前已过时间(毫秒)""" if self.running: return self.total_elapsed + (self.current_time() - self.start_time) return self.total_elapsed def current_time(self): """抽象方法,由子类实现具体计时方案""" raise NotImplementedError("Subclasses must implement current_time()") def update_core_usage(self, elapsed): """更新核心使用情况""" # 此处为简化实现,实际项目中应使用系统API获取各核心使用数据 if platform.system() == 'Windows': # 模拟多核使用情况 for core in range(os.cpu_count()): self.core_usage[core] += elapsed * (0.3 + 0.6 * np.random.random()) else: # Linux系统可读取/proc/stat获取实际数据 self.core_usage[0] = elapsed # 默认单核心 def get_cpu_utilization(self, physical_time): if physical_time > 0: return min(100, max(0, (self.current_elapsed() / physical_time) * 100)) return 0 def record_interrupt(self): """记录中断事件""" self.interrupt_count += 1 class PerformanceCounterTimer(HighPrecisionTimer): """基于性能计数器的物理计时方案""" def __init__(self): super().__init__() # 获取性能计数器频率 if platform.system() == 'Windows': self.frequency = ctypes.c_int64() windll.kernel32.QueryPerformanceFrequency(ctypes.byref(self.frequency)) self.frequency = self.frequency.value else: # Linux/macOS使用time.perf_counter self.frequency = 1e9 # 1秒 = 1e9纳秒 def current_time(self): """获取当前性能计数器时间(毫秒)""" if platform.system() == 'Windows': counter = ctypes.c_int64() windll.kernel32.QueryPerformanceCounter(ctypes.byref(counter)) return (counter.value * 1000) / self.frequency # 转换为毫秒 else: # 跨平台方案 return time.perf_counter() * 1000 class CPUCycleTimer(HighPrecisionTimer): """基于CPU周期的计时方案""" def __init__(self): super().__init__() # 获取CPU频率 self.frequency = self.get_cpu_frequency() self.power_model = self.create_power_model() # 创建功耗模型 def get_cpu_frequency(self): """尝试获取CPU频率""" try: if platform.system() == 'Windows': # Windows获取CPU频率 import winreg key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"HARDWARE\DESCRIPTION\System\CentralProcessor\0") value, _ = winreg.QueryValueEx(key, "~MHz") winreg.CloseKey(key) return value * 1e6 # MHz转换为Hz else: # Linux/macOS获取CPU频率 with open('/proc/cpuinfo') as f: for line in f: if 'cpu MHz' in line: return float(line.split(':')[1].strip()) * 1e6 # 默认值 return 3.5e9 # 3.5 GHz except: return 3.5e9 # 3.5 GHz def current_time(self): """获取当前CPU周期计数并转换为毫秒""" if platform.system() == 'Windows': return time.perf_counter_ns() / 1_000_000 # 返回毫秒级精确时间 else: # 在实际应用中应使用RDTSC指令 return time.process_time() * 1000 def create_power_model(self): # 简化的线性模型: P = a * utilization + b return lambda u: 15 + 85 * (u/100) # 基础功耗15W + 动态功耗 def estimate_energy(self, physical_time): utilization = self.get_cpu_utilization(physical_time) power = self.power_model(utilization) # 当前功耗(W) time_seconds = physical_time / 1000 # 转换为秒 return power * time_seconds # 能耗(J) class TimerApp: """计时器应用GUI""" def __init__(self, root): self.root = root root.title("高精度计时器 - 专业版") root.geometry("800x600") root.resizable(True, True) # 创建两种计时器实例 self.performance_timer = PerformanceCounterTimer() self.cpu_cycle_timer = CPUCycleTimer() # 当前选中的计时方案 self.current_timer = self.performance_timer self.interrupt_monitor_running = False # 创建UI self.create_widgets() # 启动UI更新循环 self.update_display() # 启动中断监控线程 self.start_interrupt_monitor() def create_widgets(self): """创建界面组件""" # 主框架 main_frame = tk.Frame(self.root) main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 左侧控制面板 control_frame = tk.Frame(main_frame) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 方案选择 mode_frame = tk.LabelFrame(control_frame, text="计时方案", padx=10, pady=10) mode_frame.pack(fill=tk.X, pady=5) self.mode_var = tk.StringVar(value="performance") modes = [("性能计数器 (物理时间)", "performance"), ("CPU周期 (CPU时间)", "cpu")] for text, mode in modes: rb = tk.Radiobutton(mode_frame, text=text, variable=self.mode_var, value=mode, command=self.switch_mode) rb.pack(anchor=tk.W, padx=5, pady=2) # 控制按钮 btn_frame = tk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) self.start_btn = tk.Button(btn_frame, text="开始", width=12, command=self.start_stop) self.start_btn.pack(side=tk.LEFT, padx=5) reset_btn = tk.Button(btn_frame, text="重置", width=12, command=self.reset) reset_btn.pack(side=tk.LEFT, padx=5) # 统计按钮 stats_btn = tk.Button(btn_frame, text="生成报告", width=12, command=self.generate_report) stats_btn.pack(side=tk.LEFT, padx=5) # CPU信息 info_frame = tk.LabelFrame(control_frame, text="系统信息", padx=10, pady=10) info_frame.pack(fill=tk.X, pady=5) cpu_freq = self.cpu_cycle_timer.frequency freq_text = f"CPU频率: {cpu_freq/1e9:.2f} GHz" if cpu_freq >= 1e9 else f"CPU频率: {cpu_freq/1e6:.0f} MHz" self.cpu_label = tk.Label(info_frame, text=freq_text, justify=tk.LEFT) self.cpu_label.pack(anchor=tk.W) cores_text = f"CPU核心数: {os.cpu_count()}" tk.Label(info_frame, text=cores_text, justify=tk.LEFT).pack(anchor=tk.W) # 中断统计 interrupt_frame = tk.LabelFrame(control_frame, text="中断统计", padx=10, pady=10) interrupt_frame.pack(fill=tk.X, pady=5) self.interrupt_label = tk.Label(interrupt_frame, text="中断次数: 0") self.interrupt_label.pack(anchor=tk.W) # 右侧数据显示 display_frame = tk.Frame(main_frame) display_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 双模式时间显示 time_frame = tk.LabelFrame(display_frame, text="时间对比", padx=10, pady=10) time_frame.pack(fill=tk.X, pady=5) # 物理时间显示 physical_frame = tk.Frame(time_frame) physical_frame.pack(fill=tk.X, pady=5) tk.Label(physical_frame, text="物理时间:", width=10).pack(side=tk.LEFT) self.physical_label = tk.Label(physical_frame, text="00:00:00.000", font=("Consolas", 12)) self.physical_label.pack(side=tk.LEFT) # CPU时间显示 cpu_frame = tk.Frame(time_frame) cpu_frame.pack(fill=tk.X, pady=5) tk.Label(cpu_frame, text="CPU时间:", width=10).pack(side=tk.LEFT) self.cpu_time_label = tk.Label(cpu_frame, text="00:00:00.000", font=("Consolas", 12)) self.cpu_time_label.pack(side=tk.LEFT) # 时间分解分析 analysis_frame = tk.LabelFrame(display_frame, text="时间分解分析", padx=10, pady=10) analysis_frame.pack(fill=tk.X, pady=5) # CPU利用率 util_frame = tk.Frame(analysis_frame) util_frame.pack(fill=tk.X, pady=2) tk.Label(util_frame, text="CPU利用率:", width=15).pack(side=tk.LEFT) self.util_label = tk.Label(util_frame, text="0.0%") self.util_label.pack(side=tk.LEFT) # 系统等待时间 wait_frame = tk.Frame(analysis_frame) wait_frame.pack(fill=tk.X, pady=2) tk.Label(wait_frame, text="系统等待时间:", width=15).pack(side=tk.LEFT) self.wait_label = tk.Label(wait_frame, text="0.0 ms") self.wait_label.pack(side=tk.LEFT) # 能耗估算 energy_frame = tk.Frame(analysis_frame) energy_frame.pack(fill=tk.X, pady=2) tk.Label(energy_frame, text="能耗估算:", width=15).pack(side=tk.LEFT) self.energy_label = tk.Label(energy_frame, text="0.0 J") self.energy_label.pack(side=tk.LEFT) # 多核热力图 heatmap_frame = tk.LabelFrame(display_frame, text="多核利用率热力图", padx=10, pady=10) heatmap_frame.pack(fill=tk.BOTH, expand=True, pady=5) # 创建热力图 self.figure, self.ax = plt.subplots(figsize=(6, 3)) self.canvas = FigureCanvasTkAgg(self.figure, heatmap_frame) self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) self.update_heatmap() # 初始化热力图 def switch_mode(self): """切换计时方案""" selected = self.mode_var.get() if selected == "performance": self.current_timer = self.performance_timer else: self.current_timer = self.cpu_cycle_timer # 更新CPU频率显示 cpu_freq = self.cpu_cycle_timer.frequency freq_text = f"CPU频率: {cpu_freq/1e9:.2f} GHz" if cpu_freq >= 1e9 else f"CPU频率: {cpu_freq/1e6:.0f} MHz" self.cpu_label.config(text=freq_text) def start_stop(self): """开始/停止计时""" if self.current_timer.running: self.current_timer.stop() self.start_btn.config(text="开始") else: self.performance_timer.start() self.cpu_cycle_timer.start() self.start_btn.config(text="停止") def reset(self): """重置计时器""" self.performance_timer.reset() self.cpu_cycle_timer.reset() self.physical_label.config(text="00:00:00.000") self.cpu_time_label.config(text="00:00:00.000") self.util_label.config(text="0.0%") self.wait_label.config(text="0.0 ms") self.energy_label.config(text="0.0 J") self.interrupt_label.config(text="中断次数: 0") self.start_btn.config(text="开始") self.update_heatmap() # 重置热力图 def update_heatmap(self): """更新多核热力图""" self.ax.clear() cores = sorted(self.cpu_cycle_timer.core_usage.keys()) if not cores: cores = list(range(os.cpu_count())) util = [0] * len(cores) else: total_time = max(1, self.cpu_cycle_timer.total_elapsed) util = [self.cpu_cycle_timer.core_usage[core] / total_time * 100 for core in cores] # 创建热力图数据 data = np.array(util).reshape(1, -1) im = self.ax.imshow(data, cmap='viridis', aspect='auto', vmin=0, vmax=100) # 添加标注 for i in range(len(cores)): self.ax.text(i, 0, f'{util[i]:.1f}%', ha='center', va='center', color='w') self.ax.set_title(f'CPU核心利用率 (%)') self.ax.set_xticks(range(len(cores))) self.ax.set_xticklabels([f'Core {core}' for core in cores]) self.ax.get_yaxis().set_visible(False) self.figure.colorbar(im, ax=self.ax) self.canvas.draw() def start_interrupt_monitor(self): """启动中断监控线程""" if not self.interrupt_monitor_running: self.interrupt_monitor_running = True threading.Thread(target=self.monitor_interrupts, daemon=True).start() def monitor_interrupts(self): """模拟中断监控""" while self.interrupt_monitor_running: time.sleep(0.1) # 在实际应用中,这里应读取系统中断计数器 if self.current_timer.running: # 模拟随机中断 if np.random.random() < 0.02: # 2%概率发生中断 self.performance_timer.record_interrupt() self.cpu_cycle_timer.record_interrupt() self.root.after(0, self.update_interrupt_count) def update_interrupt_count(self): """更新中断计数显示""" count = self.performance_timer.interrupt_count self.interrupt_label.config(text=f"中断次数: {count}") def generate_report(self): """生成详细分析报告""" import csv import os import platform import sys from datetime import datetime from tkinter import messagebox filename = f"timer_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv" with open(filename, 'w', newline='', encoding='utf-8') as f: writer = csv.writer(f) # 写入报告头部信息 writer.writerow(["高精度计时器分析报告"]) writer.writerow(["生成时间", datetime.now().strftime("%Y-%m-%d %H:%M:%S")]) writer.writerow([]) # 写入系统信息 writer.writerow(["系统信息"]) writer.writerow(["操作系统", platform.platform()]) writer.writerow(["CPU核心数", os.cpu_count()]) cpu_freq = self.cpu_cycle_timer.frequency freq_text = f"{cpu_freq/1e9:.2f} GHz" if cpu_freq >= 1e9 else f"{cpu_freq/1e6:.0f} MHz" writer.writerow(["CPU频率", freq_text]) writer.writerow(["Python版本", sys.version]) writer.writerow([]) # 格式化时间函数 def format_ms(ms): hours, rem = divmod(ms, 3600000) minutes, rem = divmod(rem, 60000) seconds, milliseconds = divmod(rem, 1000) return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}.{int(milliseconds):03d}" # 写入时间指标 physical_time = self.performance_timer.total_elapsed cpu_time = self.cpu_cycle_timer.total_elapsed wait_time = max(0, physical_time - cpu_time) # 系统等待时间 writer.writerow(["时间指标"]) writer.writerow(["度量项", "数值(毫秒)", "格式化时间"]) writer.writerow(["物理时间", f"{physical_time:.3f}", format_ms(physical_time)]) writer.writerow(["CPU时间", f"{cpu_time:.3f}", format_ms(cpu_time)]) writer.writerow(["系统等待时间", f"{wait_time:.3f}", format_ms(wait_time)]) writer.writerow([]) # 写入性能指标 utilization = self.cpu_cycle_timer.get_cpu_utilization(physical_time) if physical_time > 0 else 0 energy = self.cpu_cycle_timer.estimate_energy(physical_time) if physical_time > 0 else 0 writer.writerow(["性能指标"]) writer.writerow(["CPU利用率", f"{utilization:.2f}%"]) writer.writerow(["系统中断次数", self.performance_timer.interrupt_count]) writer.writerow(["估算能耗", f"{energy:.2f} J"]) writer.writerow([]) # 写入多核分析 writer.writerow(["多核利用率分析"]) writer.writerow(["核心ID", "使用时间(毫秒)", "占比"]) # 计算核心使用占比 cores = sorted(self.cpu_cycle_timer.core_usage.keys()) total_cpu_time = max(1, cpu_time) # 防止除零 for core in cores: core_time = self.cpu_cycle_timer.core_usage.get(core, 0) percentage = (core_time / total_cpu_time) * 100 writer.writerow([f"Core {core}", f"{core_time:.3f}", f"{percentage:.2f}%"]) # 添加数学公式注解 writer.writerow([]) writer.writerow(["计算公式注解"]) writer.writerow(["CPU利用率", r"$\eta = \frac{T_{cpu}}{T_{physical}} \times 100\%$"]) writer.writerow(["系统等待时间", r"$\Delta t = T_{physical} - T_{cpu}$"]) writer.writerow(["能耗估算", r"$E = \int_{0}^{T} P(u(t)) \, dt$", "(P=功耗模型)"]) # 显示成功消息 messagebox.showinfo("报告生成", f"分析报告已保存至:\n{os.path.abspath(filename)}") # 在 TimerApp 类中添加以下方法: def update_display(self): """更新UI显示""" # 获取当前时间 physical_ms = self.performance_timer.current_elapsed() cpu_ms = self.cpu_cycle_timer.current_elapsed() # 格式化时间为 HH:MM:SS.ms physical_str = self.ms_to_time_str(physical_ms) cpu_str = self.ms_to_time_str(cpu_ms) # 更新标签显示 self.physical_label.config(text=physical_str) self.cpu_time_label.config(text=cpu_str) # 计算性能指标 utilization = self.cpu_cycle_timer.get_cpu_utilization(physical_ms) if physical_ms > 0 else 0 wait_time = max(0, physical_ms - cpu_ms) # 系统等待时间 energy = self.cpu_cycle_timer.estimate_energy(physical_ms) if physical_ms > 0 else 0 # 更新性能指标显示 self.util_label.config(text=f"{utilization:.1f}%") self.wait_label.config(text=f"{wait_time:.1f} ms") self.energy_label.config(text=f"{energy:.1f} J") # 更新热力图 self.update_heatmap() # 每100毫秒更新一次显示 self.root.after(100, self.update_display) @staticmethod def ms_to_time_str(ms): """将毫秒数格式化为 HH:MM:SS.ms 字符串""" ms = max(0, ms) # 确保非负 seconds, milliseconds = divmod(ms, 1000) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}.{int(milliseconds):03d}" if __name__ == "__main__": root = tk.Tk() app = TimerApp(root) root.mainloop() 性能很卡,不是我想要的效果,要给时间显示加上颜色,并优化性能,打印台上面打印了很多无用信息e:\system\Desktop\\u9879�ڏ�������\�H��\\u8ba1\u65f6��H��\timer copy.py:352: UserWarning: Glyph 26680 (\N{CJK UNIFIED IDEOGRAPH-6838}) missing from font(s) DejaVu Sans. self.canvas.draw() e:\system\Desktop\\u9879�ڏ�������\�H��\\u8ba1\u65f6��H��\timer copy.py:352: UserWarning: Glyph 24515 (\N{CJK UNIFIED IDEOGRAPH-5FC3}) missing from font(s) DejaVu Sans. self.canvas.draw() e:\system\Desktop\\u9879�ڏ�������\�H��\\u8ba1\u65f6��H��\timer copy.py:352: UserWarning: Glyph 21033 (\N{CJK UNIFIED IDEOGRAPH-5229}) missing from font(s) DejaVu Sans. self.canvas.draw() e:\system\Desktop\\u9879�ڏ�������\�H��\\u8ba1\u65f6��H��\timer copy.py:352: UserWarning: Glyph 29992 (\N{CJK UNIFIED IDEOGRAPH-7528}) missing from font(s) DejaVu Sans. self.canvas.draw()
最新发布
10-14
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值