频繁项集实际应用之分类到分类的交叉推荐

本文介绍了一个实际的工程项目,应用频繁项集进行关联规则推荐物品。通过Map-Reduce实现,包括三个map-reduce过程:生成频繁一项集、频繁二项集,以及最后的推荐结果。具体涉及数据清洗、统计和业务逻辑处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注鄙人公众号,技术干货随时看!

 

首先介绍下频繁项集的相关知识!其实频繁项集是针对购物车提出来的,也就是在购物车中频繁出现的物品的集合。
2.相关概念:
 关联规则的支持度:Support(A,B)=包含A和B的事务数/事务总数
 关联规则的置信度:Confidence(A,B)= 包含A和B的事务数/包含A事务数
 频繁项集:项集的频率大于等于最小支持度。
 强相关规则:同时满足最小支持度和最小置信度。
3.关联规则挖掘的步骤:

 

 生成频繁项集,然后生成规则

 

空谈理论是没有实际意义的,本文基于敝人一个实际的工程项目,来介绍如何应用频繁项集进行关联规则推荐物品。基于商业秘密,所用到的数据均进行了处理!本工程通过Map-Reduce实现,由三个map-reduce过程来完成。

第一个map-reduce类:CrossRecommendStep1,生成频繁一项集,输入文件为order_wash.txt,这个文件在具体的项目中一般都是由用户的定单数据统计而来,具体的日志清洗与统计不在本文讨论范畴,其实一个完整的推荐流程是由日志清单、用户常购清单、推荐算法等多个步骤才能完成的,本文专注于交叉推荐算法的实际应用!order_wash.txt 格式如下:

 

accessTime					mem_guid		category
2016-04-20 11:31:20			FN05916			CC204316,CC304119,CC404115
2016-04-20 11:31:20			FN05917			CC204315,CC304111,CC404115
2016-04-20 11:31:20			FN05918			CC204314,CC304112,CC404115
2016-04-20 11:31:20			FN05919			CC204311,CC304113,CC404117
2016-04-20 11:31:20			FN05920			CC204311,CC304115,CC404116
2016-04-20 11:31:20			FN05921			CC204311,CC304115,CC404115

下面看CrossRecommendStep1类具本的实现代码,此类主要是统计每个分类下的购买次数(包括不同用户的,一个用户多次购买算多次,当然你也可以根据自己的业务逻辑来完成这个统计)最终的输出如下,只贴出来一部分

category	count
CC204316	1
CC204311	3
CC404115	4

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

/*
 * 交叉关联推荐:CC——CC
 * 用于订单成交后向上交叉推荐
 * Step1:生成频繁1项集
 * @author jianting.zhao
 * main函数就是驱动函数,固定的写法,in是输入文件路径,out是输出结果路径
 * 
 * 
 */
public class CrossRecommendStep1 {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: Data Deduplication <in> <out> ");
            System.exit(2);
        }
        FileSystem fs = FileSystem.get(conf);
        Path outPath = new Path(otherArgs[1]);
        fs.deleteOnExit(outPath);

        Job job = new Job(conf, "CrossRecommendStep1");
        job.setJarByClass(CrossRecommendStep1.class);
        job.setMapperClass(CrossRecommendStep1Map.class);
        job.setReducerClass(CrossRecommendStep1Reduce.class);

        //设置输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setNumReduceTasks(10);
        
        //设置输入及输出文件格式
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        //设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, outPath);
        job.waitForCompletion(true);
    }

    public static class CrossRecommendStep1Map extends Mapper<Object, Text, Text, IntWritable> {

        private final static IntWritable one = new IntWritable(1);

        @Override
        protected void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String[] line = value.toString().split("\t");
            if (line.length == 3) {
                String accessTime = line[0];
                String mem_guid = line[1];
                String category = line[2];

                String[] temp = category.split(",");

                for (int k = 0; k < temp.length; k++) {
                    if (temp[k] == null) {
                        continue;
                    }

                    context.write(new Text(temp[k]), one);
                }
            }

        }
    }

    public static class CrossRecommendStep1Reduce extends Reducer<Text, IntWritable, Text, Text> {

        @Override
        protected void reduce(Text key, Iterable<IntWritable> value, Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable n : value) {
                sum += n.get();
            }

            context.write(key, new Text(String.valueOf(sum)));
        }
    }
}

 

 

 

 

 

第二个map-reduce类:CrossRecommendStep2,生成频繁二项集,输入文件为order_wash.txt,和CrossRecommendStep1的输出,代码中有注释,

不再做另外的讲解

 

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

/**
 * 生成频繁2项集
 *最终的输出格式是
 *ccA		ccB			support		confidence
 *CC204311	CC204314	8			0.8
 *
 *support是支持度,是ccA=>ccB的总次数,confidence为置信度support/ccA总的购买次数
 * @author jianting.zhao
 */
public class CrossRecommendStep2 {

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 3) {
            System.err.println("Usage: Data Deduplication <in> <in> <out> ");
            System.exit(2);
        }
        FileSystem fs = FileSystem.get(conf);
        Path freqset1 = new Path(otherArgs[1]);
        FileStatus[] user_stat = fs.listStatus(freqset1);
        for (FileStatus f : user_stat) {//缓存上一步的输出
            if (f.getPath().getName().indexOf("_SUCCESS") == -1 && f.isFile()) {
                DistributedCache.addCacheFile(f.getPath().toUri(), conf);
            }
        }

        if (fs.exists(new Path(otherArgs[2]))) {
            fs.delete(new Path(otherArgs[2]),true);
        }

        Job job = new Job(conf, "CrossRecommendStep2");
        job.setJarByClass(CrossRecommendStep2.class);
        job.setMapperClass(CrossRecommendStep2Map.class);
        job.setReducerClass(CrossRecommendStep2Reduce.class);

        //设置输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setNumReduceTasks(1);

        //设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
        job.waitForCompletion(true);

    }

    public static class CrossRecommendStep2Map extends Mapper<Object, Text, Text, IntWritable> {

        HashMap<String, Integer> ctg_count = new HashMap<String, Integer>();
        private static final IntWritable one = new IntWritable(1);

        /*
         * 加载频繁1项集
         * 分类下购买次数大于10的构建频繁一项集,存储到HashMap<String, Integer> ctg_count中
         */
        protected void setup(Context context)
                throws IOException, InterruptedException {
            Configuration conf = context.getConfiguration();
            Path[] file = DistributedCache.getLocalCacheFiles(conf);
            FileSystem fs = FileSystem.getLocal(conf);
            String line = null;
            for (Path path : file) {
                BufferedReader reader = new BufferedReader(new InputStreamReader(fs.open(path)));
                while ((line = reader.readLine()) != null) {
                    String[] tmp = line.split("\t");

                    if (tmp.length != 2) {
                        continue;
                    }

                    String ctg = tmp[0];
                    int num = Integer.parseInt(tmp[1]);
                    if (num >= 10) {
                        ctg_count.put(ctg, num);
                    }
                }
            }
        }

        /**
         * 本函数的输出是原始文件,根据频繁一项集,生成ccA=>ccB和ccB=>ccA关联交叉关系
         */
        @Override
        protected void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String[] line = value.toString().split("\t");

            if (line.length == 3) {
                String stg_set = line[2];

                List<String> order_list = new ArrayList<String>();
                String[] tmp = stg_set.split(",");

                //剔除不满足频繁一项集的CC
                for (int k = 0; k < tmp.length; k++) {
                    if (tmp[k] == null) {
                        continue;
                    }

                    if (ctg_count.get(tmp[k]) != null) {
                        order_list.add(tmp[k]);
                    }
                }

                //构建频繁2项集
                for (int i = 0; i < order_list.size(); i++) {

                    String ccA = order_list.get(i);
                    for (int j = i + 1; j < order_list.size(); j++) {
                        String ccB = order_list.get(j);

                        context.write(new Text(ccA + ":" + ccB), one);
                        context.write(new Text(ccB + ":" + ccA), one);
                    }
                }
            }
        }

    }

    public static class CrossRecommendStep2Reduce extends Reducer<Text, IntWritable, Text, Text> {
        HashMap<String, Integer> ctg_count = new HashMap<String, Integer>();
        DecimalFormat df = new DecimalFormat("0.00");

        /*
         * 加蒌频繁1项集
         */
        protected void setup(Context context)
                throws IOException, InterruptedException {
            Configuration conf = context.getConfiguration();
            Path[] file = DistributedCache.getLocalCacheFiles(conf);
            FileSystem fs = FileSystem.getLocal(conf);
            String line = null;
            for (Path path : file) {
                BufferedReader reader = new BufferedReader(new InputStreamReader(fs.open(path)));
                while ((line = reader.readLine()) != null) {
                    String[] tmp = line.split("\t");

                    if (tmp.length != 2) {
                        continue;
                    }

                    String ctg = tmp[0];
                    int num = Integer.parseInt(tmp[1]);
                    if (num >= 10) {
                        ctg_count.put(ctg, num);
                    }
                }
            }
        }

        /*
         * 计算2项集的支持度和置信度
         */
        @Override
        protected void reduce(Text key, Iterable<IntWritable> value, Context context)
                throws IOException, InterruptedException {
            String[] line = key.toString().split(":");
            String ccA = line[0];
            String ccB = line[1];

            int ccA_num = ctg_count.get(ccA);

            int sum = 0;
            for (IntWritable n : value) {
                sum += n.get();
            }

            //支持度
            int support = sum;
            //置信度
            double confidence = (double) sum / ccA_num;
            StringBuffer sb = new StringBuffer();
            sb.append(support).append("\t").append(df.format(confidence));

            if (confidence > 0.0) {
                context.write(new Text(ccA + "\t" + ccB), new Text(sb.toString()));
            }

        }
    }
}


第三个map-reduce类:CrossRecommendStep3,用常购清单给出推荐结果,致于常购清单的生成不在本文讨论范畴.

推荐的整本思想是,当ccA=>ccB高于某个阀值时,用ccB的常购商品作为ccA的推荐结果

 

 

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

/**
 * 根据关联类目,推荐常购清单商品
 *此处推荐用到了分类下的常购清单
 *推荐的整本思想是,当ccA=>ccB高于某个阀值时,用ccB的常购商品作为ccA的推荐结果
 * @author jianting.zhao
 */
public class CrossRecommendStep3 {

    @SuppressWarnings("deprecation")
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 3) {
            System.err.println("Usage: Data Deduplication <in> <in> <out> ");
            System.exit(2);
        }

        //加载常购清单
        FileSystem fs = FileSystem.get(conf);
        Path freqset1 = new Path(otherArgs[1]);
        FileStatus[] user_stat = fs.listStatus(freqset1);
        for (FileStatus f : user_stat) {
            if (f.getPath().getName().indexOf("_SUCCESS") == -1) {
                DistributedCache.addCacheFile(f.getPath().toUri(), conf);
            }
        }

        if (fs.exists(new Path(otherArgs[2]))) {
            fs.delete(new Path(otherArgs[2]),true);
        }

        Job job = new Job(conf, "CrossRecommendStep3");
        job.setJarByClass(CrossRecommendStep3.class);
        job.setMapperClass(CrossRecommendStep3Map.class);
        job.setReducerClass(CrossRecommendStep3Reduce.class);

        //设置输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setNumReduceTasks(1);

        //设置输入和输出目录
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));
        job.waitForCompletion(true);

    }


    public static class CrossRecommendStep3Map extends Mapper<Object, Text, Text, Text> {

        /*
         * 加载频繁二项集
         */
        @Override
        protected void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
        	String[] category = key.toString().split("\t");
            String[] line = value.toString().split("\t");
            if (category.length == 2) {
                String ctg1 = category[0];
                String ctg_rec = category[1];
                /*
                 * 这段代码是限制关联度高于多少时才用来推荐
                 */
                /*double support = Double.parseDouble(line[0]);
                double confidence = Double.parseDouble(line[0]);
                if(support < 100 || confidence< 0.8){
                	return;
                }
                */
                if (ctg1 != null && ctg_rec != null) {
                    context.write(new Text(ctg1), new Text(ctg_rec));
                    context.write(new Text(ctg_rec), new Text(ctg1));
                }
            }
        }

    }

    public static class CrossRecommendStep3Reduce extends Reducer<Text, Text, Text, Text> {
        Map<String, ArrayList<String>> ctg_often_items = new HashMap<String, ArrayList<String>>();

        /*
         *加载常购清单
         */
        protected void setup(Context context)
                throws IOException, InterruptedException {
            Configuration conf = context.getConfiguration();
            Path[] file = DistributedCache.getLocalCacheFiles(conf);
            FileSystem fs = FileSystem.getLocal(conf);
            String line = null;
            for (Path path : file) {
                BufferedReader reader = new BufferedReader(new InputStreamReader(fs.open(path)));
                while ((line = reader.readLine()) != null) {
                    String[] tmp = line.split("\t");

                    if (tmp.length != 3) {
                        continue;
                    }

                    String ctg = tmp[0];
                    String item_id = tmp[1];

                    ArrayList<String> often_items = ctg_often_items.get(ctg);
                    if (often_items == null || often_items.isEmpty()) {
                        often_items = new ArrayList<String>();
                        ctg_often_items.put(ctg, often_items);
                    }

                    if (often_items.size() < 20) {
                        often_items.add(item_id);
                    }
                }
            }
        }

        @Override
        protected void reduce(Text key, Iterable<Text> value, Context context)
                throws IOException, InterruptedException {
            ArrayList<String> recommend_list = new ArrayList<String>();

            //用常购清单商品给出推荐
            if (recommend_list.size() < 50) {
                int completion_num = 50 - recommend_list.size();

                int temp = 0;
                int size = 0;

                while (completion_num > 0 && temp <= size) {

                    if (recommend_list.size() > 50) {
                        break;
                    }

                    for (Text val : value) {

                        if (recommend_list.size() > 50) {
                            break;
                        }

                        String rec_ctg = val.toString();
                        if (ctg_often_items.get(rec_ctg) == null) {
                            continue;
                        }

                        ArrayList<String> offen_items = ctg_often_items.get(rec_ctg);

                        size = offen_items.size() - 1;

                        if (temp >= offen_items.size()) {
                            continue;
                        }

                        String comple_itemid = offen_items.get(temp);

                        if (!recommend_list.contains(comple_itemid)) {
                            recommend_list.add(comple_itemid);
                            completion_num--;
                        }
                    }
                    temp++;
                }
            }

            if (recommend_list.size() > 0) {
                context.write(key, new Text(recommend_list.toString()));
            }

        }

    }
}

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿童木-atom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值