常用加密算法(Java实现)总结

本文详细介绍了Java中的常见加密算法,包括单向加密算法MD5和SHA的原理与Java实现,以及对称加密算法DES、3DES和AES的工作模式与Java代码示例。此外,还提到了非对称加密算法RSA的基本用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Java的安全体系架构

Java中为安全框架提供类和接口。JDK 安全 API 是 Java 编程语言的核心 API,位于 java.security 包(及其子包),以及sun.securityAPI包(及其子包)中。设计用于帮助开发人员在程序中同时使用低级和高级安全功能。

JDK 1.1 中第一次发布的 JDK 安全中引入了“Java 加密体系结构”(JCA),指的是用于访问和开发 Java 平台密码功能的构架。在 JDK 1.1 中,JCA 包括用于数字签名和报文摘要的 API。JDK 1.2 大大扩展了 Java 加密体系结构,它还对证书管理基础结构进行了升级以支持 X.509 v3 证书,并为划分细致、可配置性强、功能灵活、可扩展的访问控制引入了新的 Java 安全体系结构。

Java 加密体系结构包含 JDK 1.2 安全 API 中与密码有关的部分,以及本文档中提供的一组约定和规范。为实现多重、可互操作的密码,它还提供了“提供者”体系结构。

Java 密码扩展 (JCE))扩展了 JCA API,包括用于加密、密钥交换和信息认证码(MAC)的 API。JCE 和 JDK 密码共同提供了一个与平台无关的完整密码 API。JCE 作为 JDK 的扩展将独立发布,以符合美国的出口控制约束。

在JDK6.0中,与MD5与SHA密切相关的几个类的类图如下:
在这里插入图片描述
其中“MessageDigestSpi”为顶层抽象类,同一个包下的“MessageDigest”和“DigestBase”为子抽象类。

在上面的类图中,使用了Delegate(委托)设计模式。这种模式的原理为类B(在此处为Delegage内部类)和类A(在此处为MessageDigestSpi类)是两个互相没有什么关系的类,B具有和A一模一样的方法和属性;并且调用B中的方法和属性就是调用A中同名的方法和属性。B好像就是一个受A授权委托的中介。第三方的代码不需要知道A及其子类的存在,也不需要和A及其子类发生直接的联系,通过B就可以直接使用A的功能,这样既能够使用到A的各种功能,又能够很好的将A及其子类保护起来了。

MD5和SHA的相关代码都在MD5和SHA等类中,但是面向客户的MessageDigest抽象类不需要跟各个实现类打交道,只要通过委托类与其打交道即可。

二、单向加密算法MD5和SHA

2.1 MD5加密

2.1.1 概述

Message Digest Algorithm MD5(中文名为消息摘要算法第五版)为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护。该算法的文件号为RFC 1321(R.Rivest,MIT Laboratory for Computer Science and RSA Data Security Inc. April 1992).

MD5的全称是Message-Digest Algorithm 5(信息-摘要算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest开发出来,经MD2、MD3和MD4发展而来。

MD5用于确保信息传输完整一致。是计算机广泛使用的杂凑算法之一(又译摘要算法、哈希算法),主流编程语言普遍已有MD5实现。将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5的前身有MD2、MD3和MD4。

MD5的作用是让大容量信息在用数字签名软件签署私人密钥前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的十六进制数字串)。

2.1.2 算法原理

对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

在MD5算法中,首先需要对信息进行填充,使其位长对512求余的结果等于448。因此,信息的位长(Bits Length)将被扩展至N512+448,N为一个非负整数,N可以是零。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,信息的位长=N512+448+64=(N+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。

2.1.3 Java中的MD5实现

MD5加密算法的Java实现如下所示:

import java.security.MessageDigest;

/** 
 * 采用MD5加密
 * @author Xingxing,Xie
 * @datetime 2014-5-31 
 */
public class MD5Util {
   
   
    /*** 
     * MD5加密 生成32位md5码
     * @param 待加密字符串
     * @return 返回32位md5码
     */
    public static String md5Encode(String inStr) throws Exception {
   
   
        MessageDigest md5 = null;
        try {
   
   
            md5 = MessageDigest.getInstance("MD5");
        } catch (Exception e) {
   
   
            System.out.println(e.toString());
            e.printStackTrace();
            return "";
        }

        byte[] byteArray = inStr.getBytes("UTF-8");
        byte[] md5Bytes = md5.digest(byteArray);
        StringBuffer hexValue = new StringBuffer();
        for (int i = 0; i < md5Bytes.length; i++) {
   
   
            int val = ((int) md5Bytes[i]) & 0xff;
            if (val < 16) {
   
   
                hexValue.append("0");
            }
            hexValue.append(Integer.toHexString(val));
        }
        return hexValue.toString();
    }

    /**
     * 测试主函数
     * @param args
     * @throws Exception
     */
    public static void main(String args[]) throws Exception {
   
   
        String str = new String("amigoxiexiexingxing");
        System.out.println("原始:" + str);
        System.out.println("MD5后:" + md5Encode(str));
    }
}
 

测试结果:

原始:amigoxiexiexingxing

MD5后:e9ac094091b96b84cca48098bc21b1d6

2.2 SHA加密

2.2.1 概述

SHA是一种数据加密算法, 该算法经过加密专家多年来的发展和改进已日益完善,现在已成为公认的最安全的散列算法之一,并被广泛使用。该算法的思想是接收一段明文,然后以一种不可逆 的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也 称为信息摘要或信息认证代码)的过程。散列函数值可以说是对明文的一种“指纹”或是“摘要”所以对散列值的数字签名就可以视为对此明文的数字签名。

安全散列算法SHA(Secure Hash Algorithm,SHA)是美国国家标准技术研究所发布的国家标准FIPS PUB 180,最新的标准已经于2008年更新到FIPS PUB 180-3。其中规定了SHA-1,SHA-224,SHA-256,SHA-384,和SHA-512这几种单向散列算法。SHA-1,SHA-224和SHA-256适用于长度不超过2^64 二进制位的消息。SHA-384和SHA-512适用于长度不超过2^128 二进制位的消息。

2.2.2 原理

SHA-1是一种数据加密算法,该算法的思想是接收一段明文,然后以一种不可逆的方式将它转换成一段(通常更小)密文,也可以简单的理解为取一串输入码(称为预映射或信息),并把它们转化为长度较短、位数固定的输出序列即散列值(也称为信息摘要或信息认证代码)的过程。

单向散列函数的安全性在于其产生散列值的操作过程具有较强的单向性。如果在输入序列中嵌入密码,那么任何人在不知道密码的情况下都不能产生正确的散列值,从而保证了其安全性。SHA将输入流按照每块512位(64个字节)进行分块,并产生20个字节的被称为信息认证代码或信息摘要的输出。

该算法输入报文的长度不限,产生的输出是一个160位的报文摘要。输入是按512 位的分组进行处理的。SHA-1是不可逆的、防冲突,并具有良好的雪崩效应。

通过散列算法可实现数字签名实现,数字签名的原理是将要传送的明文通过一种函数运算(Hash)转换成报文摘要(不同的明文对应不同的报文摘要),报文摘要加密后与明文一起传送给接受方,接受方将接受的明文产生新的报文摘要与发送方的发来报文摘要解密比较,比较结果一致表示明文未被改动,如果不一致表示明文已被篡改。

MAC (信息认证代码)就是一个散列结果,其中部分输入信息是密码,只有知道这个密码的参与者才能再次计算和验证MAC码的合法性。

2.2.3 Java中SHA实现

SHA的在Java的实现与MD5类似,参考代码如下所示:

import java.security.MessageDigest;

/** 
 * 采用SHAA加密
 * @author Xingxing,Xie
 * @datetime 2014-6-1 
 */
public class SHAUtil {
   
   
    /*** 
     * SHA加密 生成40位SHA码
     * @param 待加密字符串
     * @return 返回40位SHA码
     */
    public static String shaEncode(String inStr) throws Exception {
   
   
        MessageDigest sha = null;
        try {
   
   
            sha = MessageDigest.getInstance("SHA");
        } catch (Exception e) {
   
   
            System.out.println(e.toString());
            e.printStackTrace();
            return "";
        }

        byte[] byteArray = inStr.getBytes("UTF-8");
        byte[] md5Bytes = sha.digest(byteArray);
        StringBuffer hexValue = new StringBuffer();
        for (int i = 0; i < md5Bytes.length; i++) {
   
   
            int val = ((int) md5Bytes[i]) & 0xff;
            if (val < 16) {
   
    
                hexValue.append("0");
            }
            hexValue.append(Integer.toHexString(val));
        }
        return hexValue.toString();
    }

    /**
     * 测试主函数
     * @param args
     * @throws Exception
     */
    public static void main(String args[]) throws Exception {
   
   
        String str = new String("amigoxiexiexingxing");
        System.out.println("原始:" + str);
        System.out.println("SHA后:" + shaEncode(str));
    }
}
 

输出如下:

原始:amigoxiexiexingxing
SHA后:04f79f496dd6bdab3439511606528a4ad9caac5e

2.3 MD5 与SHA-1对比

因为二者均由MD4导出,SHA-1和MD5彼此很相似。相应的,他们的强度和其他特性也是相似,但还有以下几点不同:

1)对强行攻击的安全性:最显著和最重要的区别是SHA-1摘要比MD5摘要长32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对MD5是2128数量级的操作,而对SHA-1则是2160数量级的操作。这样,SHA-1对强行攻击有更大的强度。

2)对密码分析的安全性:由于MD5的设计,易受密码分析的攻击,SHA-1显得不易受这样的攻击。

3)速度:在相同的硬件上,SHA-1的运行速度比MD5慢。

3、对称加密算法DES、3DES和AES

3.1 对称加密算法

3.1.1 定义

对称加密算法是应用较早的加密算法,技术成熟。在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去。收信方收到密文后,若想解读原文,则需要使用加密用过的密钥及相同算法的逆算法对密文进行解密,才能使其恢复成可读明文。在对称加密算法中,使用的密钥只有一个,发收信双方都使用这个密钥对数据进行加密和解密,这就要求解密方事先必须知道加密密钥。

3.1.2 优缺点

优点:算法公开、计算量小、加密速度快、加密效率高。

缺点:

(1)交易双方都使用同样钥匙,安全性得不到保证。

(2)每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一钥匙,这会使得发收信双方所拥有的钥匙数量呈几何级数增长,密钥管理成为用户的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。

3.1.3 常用对称加密算法

基于“对称密钥”的加密算法主要有DES、3DES(TripleDES)、AES、RC2、RC4、RC5和Blowfish等。本文只介绍最常用的对称加密算法DES、3DES(TripleDES)和AES。

3.2 DES

3.2.1 概述

DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

3.2.2 算法原理

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其算法主要分为两步:

(1)初始置换

其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则为将输入的第58位换到第一位,第50位换到第2位……依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:设置换前的输入值为D1D2D3……D64,则经过初始置换后的结果为:L0=D58D50……D8;R0=D57D49……D7。

(2)逆置换

经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,逆置换正好是初始置换的逆运算,由此即得到密文输出。

3.2.3 五种分组模式
3.2.3.1 EBC模式

在这里插入图片描述

优点:

1.简单;

2.有利于并行计算;

3.误差不会被传送;

缺点:

1.不能隐藏明文的模式;

2.可能对明文进行主动攻击。

3.2.3.2 CBC模式

CBC模式又称为密码分组链接模式,示意图如下:
在这里插入图片描述
优点:

1.不容易主动攻击,安全性好于ECB,适合传输长度长的报文,是SSL、IPSec的标准。

缺点:

1、不利于并行计算;

2、误差传递;

3、需要初始化向量IV。

3.2.3.3 CFB模式

CFB模式又称为密码发反馈模式,示意图如下图所示
在这里插入图片描述
优点:

1、隐藏了明文模式;

2、分组密码转化为流模式;

3、可以及时加密传送小于分组的数据。

缺点:

1、不利于并行计算;

2、误差传送:一个明文单元损坏影响多个单元;

3、唯一的IV。

3.2.3.4 OFB模式

OFB模式又称输出反馈模式,示意图所下图所示:
在这里插入图片描述
优点:

1、隐藏了明文模式;

2、分组密码转化为流模式;

3、可以及时加密传送小于分组的数据。

缺点:

1、不利于并行计算;

2、对明文的主动攻击是可能的;

3、误差传送:一个明文单元损坏影响多个单元。

3.2.3.5 CTR模式

扩展,传送门

3.2.4 Java中的DES实现

DES加密算法(ECB、无填充)的Java实现如下所示:

生成秘钥:

//KeyGenerator,密钥生成器
KeyGenerator keyGen = KeyGenerator.getInstance("DES");//算法:DES,DESede,AES

//初始化密钥生成器
keyGen.init(56); //各算法密钥长度不同,参见说明

//生成密钥
SecretKey secretKey = keyGen
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值