用动态规划求解,设w[i][j]表示从i到j用一张光盘最多刻多少首歌,可用0-1背包求出;f[i][j]表示前j首歌用i个光盘最多刻多少首歌,状态转移方程:f[i][j] = max(f[i - 1][l] + w[l + 1][j]) (i - 1 <= l <= j - 1)。这道题和UVA 662-Fast Food非常相似。
/*
ID:zhaofuk1
PROG: rockers
LANG: C++
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int w[30][30], f[30][30], ut[30], tmp[30];
int n, t, m, ans, cnt = 0;
int main()
{
freopen("rockers.in", "r", stdin);
freopen("rockers.out", "w", stdout);
scanf("%d %d %d", &n, &t, &m);
if(m > n) m = n;
for(int i = 1; i <= n; i++)
scanf("%d", &ut[i]);
memset(f, 0, sizeof(f));
memset(w, 0, sizeof(w));
for(int i = 1; i <= n; i++){
for(int j = i; j <= n; j++){
memset(tmp, 0, sizeof(tmp));
for(int k = i; k <= j; k++){
for(int v = t; v >= ut[k]; v--){
tmp[v] = max(tmp[v], tmp[v - ut[k]] + 1);
}
}
w[i][j] = tmp[t];
}
}
for(int j = 1; j <= n; j++) f[1][j] = w[1][j];
for(int i = 2; i <= m; i++){
for(int j = i; j <= n; j++){
for(int k = i - 1; k < j; k++){
f[i][j] = max(f[i][j], f[i - 1][k] + w[k + 1][j]);
}
}
}
printf("%d\n", f[m][n]);
return 0;
}