1)作业完成时间取决于最慢的任务完成时间
一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。
典型案例:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?
2)推测执行机制:
发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。
3)执行推测任务的前提条件
(1)每个task只能有一个备份任务;
(2)当前job已完成的task必须不小于0.05(5%)
(3)开启推测执行参数设置。Hadoop2.7.2 mapred-site.xml文件中默认是打开的。
|
<property> <name>mapreduce.map.speculative</name> <value>true</value> <description>If true, then multiple instances of some map tasks may be executed in parallel.</description> </property>
<property> <name>mapreduce.reduce.speculative</name> <value>true</value> <description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description> </property> |
4)不能启用推测执行机制情况
(1)任务间存在严重的负载倾斜;
(2)特殊任务,比如任务向数据库中写数据。
5)算法原理:(要会推算公式)

本文介绍了Hadoop中作业完成时间受最慢任务影响的问题,并详细解析了推测执行机制的工作原理及其前提条件。通过启动备份任务来提高整体作业效率。
514

被折叠的 条评论
为什么被折叠?



