一、升幂定理
引入记号 vp(n)v_p(n)vp(n) 表示 nnn 的唯一分解中 ppp 的次数,即 pvp(n)∣np^{v_p(n)}\mid npvp(n)∣n 且 pvp(n)∤np^{v_p(n)}\nmid npvp(n)∤n 。
升幂定理分为两种情况,模数为奇质数和模数为 222 。
① 模数为奇质数时,定理内容为:
nnn 为正整数,整数 p∤x,p∤yp\nmid x,p\nmid yp∤x,p∤y,且 x≡y(modp)x\equiv y\pmod px≡y(modp) 。则满足:
vp(xn−yn)=vp(x−y)+vp(n)
v_p(x^n-y^n)=v_p(x-y)+v_p(n)
vp(xn−yn)=vp(x−y)+vp(n)
② 模数为 222 时,定理内容为:
nnn 为正整数,整数 xxx 和 yyy 均为奇数。
若 nnn 为奇数,则:
v2(xn−yn)=v2(x−y)
v_2(x^n-y^n)=v_2(x-y)
v2(xn−yn)=v2(x−y)
若 nnn 为偶数,则:
v2(xn−yn)=v2(x−y)+v2(x+y)+v2(n)−1
v_2(x^n-y^n)=v_2(x-y)+v_2(x+y)+v_2(n)-1
v2(xn−yn)=v2(x−y)+v2(x+y)+v2(n)−1
二、证明
模数为奇质数
引理 111 :当 ppp 为奇质数,x,y∈Z+x,y\in \mathbb{Z_+}x,y∈Z+ 满足 p∤x,p∤yp\nmid x,p\nmid yp∤x,p∤y 且 x≡y(modp)x\equiv y\pmod px≡y(modp) 时, vp(xp−yp)=vp(x−y)+1v_p{(x^p-y^p)}=v_p{(x-y)}+1vp(xp−yp)=vp(x−y)+1 。
证明:
(xp−yp)=(x−y)(xp−1+xp−2y+⋯+yp−1)
(x^p-y^p)=(x-y)(x^{p-1}+x^{p-2}y+\dots+y^{p-1})
(xp−yp)=(x−y)(xp−1+xp−2y+⋯+yp−1)
对两边取 vpv_pvp 得
vp(xp−yp)=vp(x−y)+vp(xp−1+xp−2y+⋯+yp−1)
v_p(x^p-y^p)=v_p(x-y)+v_p(x^{p-1}+x^{p-2}y+\dots+y^{p-1})
vp(xp−yp)=vp(x−y)+vp(xp−1+xp−2y+⋯+yp−1)
要证 vp(xp−yp)=vp(x−y)+1v_p{(x^p-y^p)}=v_p{(x-y)}+1vp(xp−yp)=vp(x−y)+1 只需证 vp(xp−1+xp−2y+⋯+yp−1)=1v_p(x^{p-1}+x^{p-2}y+\dots+y^{p-1})=1vp(xp−1+xp−2y+⋯+yp−1)=1 即可,即证明 p∣(xp−1+xp−2y+⋯+yp−1)p \mid (x^{p-1}+x^{p-2}y+\dots+y^{p-1})p∣(xp−1+xp−2y+⋯+yp−1) 且 p2∤xp−1+xp−2y+⋯+yp−1p^2 \nmid x^{p-1}+x^{p-2}y+\dots+y^{p-1}p2∤xp−1+xp−2y+⋯+yp−1 。
① p∣(xp−1+xp−2y+⋯+yp−1)p \mid (x^{p-1}+x^{p-2}y+\dots+y^{p-1})p∣(xp−1+xp−2y+⋯+yp−1)
由于 x≡y(modp)x\equiv y\pmod px≡y(modp) ,因此 xk≡yk(modp),k∈Z+x^k\equiv y^k\pmod p,k\in \mathbb{Z_+}xk≡yk(modp),k∈Z+ ,所以 xp−1≡xp−2y≡⋯≡yp−1(modp)x^{p-1}\equiv x^{p-2}y\equiv\dots\equiv y^{p-1}\pmod pxp−1≡xp−2y≡⋯≡yp−1(modp) ,原式可化简为
xp−1+xp−2y+⋯+yp−1≡pxp−1≡0(modp)
x^{p-1}+x^{p-2}y+\dots+y^{p-1}\equiv px^{p-1}\equiv0\pmod p
xp−1+xp−2y+⋯+yp−1≡pxp−1≡0(modp)
故 p∣(xp−1+xp−2y+⋯+yp−1)p\mid (x^{p-1}+x^{p-2}y+\dots+y^{p-1})p∣(xp−1+xp−2y+⋯+yp−1) 。
② p2∤(xp−1+xp−2y+⋯+yp−1)p^2 \nmid (x^{p-1}+x^{p-2}y+\dots+y^{p-1})p2∤(xp−1+xp−2y+⋯+yp−1)
由于 x≡y(modp)x\equiv y\pmod px≡y(modp) 不妨设 y=x+kp,k∈Zy=x+kp,k\in\mathbb{Z}y=x+kp,k∈Z 。
对于 t∈{0,1,2,3,…,p−1}t\in\{0,1,2,3,\dots ,p-1\}t∈{0,1,2,3,…,p−1} ,写出右边的通项并使用二项式定理展开得到
xp−1−tyt=xp−1−t(x+kp)t=xp−1−t(xt+Ct1xt−1(kp)+Ct2(kp)2+… )
x^{p-1-t}y^{t} = x^{p-1-t}(x+kp)^t=x^{p-1-t}(x^t+C_{t}^1x^{t-1}(kp)+C_t^2(kp)^2+\dots)
xp−1−tyt=xp−1−t(x+kp)t=xp−1−t(xt+Ct1xt−1(kp)+Ct2(kp)2+…)
在模 p2p^2p2 同余系下有
xp−1−t(xt+Ct1xt−1(kp)+Ct2(kp)2+… )≡xp−1−t(xt+txt−1(kp)+t(t−1)2xt−2(kp)2+… )≡xp−1−t(xt+txt−1(kp))≡xp−1+txp−2kp(modp2)
\begin{aligned}
x^{p-1-t}(x^t+C_{t}^1x^{t-1}(kp)+C_t^2(kp)^2+\dots) &\equiv x^{p-1-t}(x^t+tx^{t-1}(kp)+\frac{t(t-1)}{2}x^{t-2}(kp)^2+\dots) \\
&\equiv x^{p-1-t}(x^t+tx^{t-1}(kp)) \\
&\equiv x^{p-1}+tx^{p-2}kp\pmod {p^2}
\end{aligned}
xp−1−t(xt+Ct1xt−1(kp)+Ct2(kp)2+…)≡xp−1−t(xt+txt−1(kp)+2t(t−1)xt−2(kp)2+…)≡xp−1−t(xt+txt−1(kp))≡xp−1+txp−2kp(modp2)
据此通项原式在模 p2p^2p2 剩余系下可化简为(这里化简的最后一步只有 p−12\frac{p-1}{2}2p−1 是整数才可以,也就是 ppp 需要为奇质数)
xp−1+xp−2y+⋯+yp−1≡∑t=0p−1(xp−1+txp−2kp)≡pxp−1+(∑t=1p−1t)xp−2kp≡pxp−1+p(p−1)2xp−2kp≡pxp−1(modp2)
\begin{aligned}
x^{p-1}+x^{p-2}y+\dots+y^{p-1}& \equiv \sum_{t=0}^{p-1}(x^{p-1}+tx^{p-2}kp) \\
&\equiv px^{p-1}+\Big(\sum_{t=1}^{p-1}t\Big) x^{p-2}kp \\
&\equiv px^{p-1}+\frac{p(p-1)}{2}x^{p-2}kp \\
&\equiv px^{p-1} \pmod {p^2}
\end{aligned}
xp−1+xp−2y+⋯+yp−1≡t=0∑p−1(xp−1+txp−2kp)≡pxp−1+(t=1∑p−1t)xp−2kp≡pxp−1+2p(p−1)xp−2kp≡pxp−1(modp2)
由于 x≢0(modp)x\not\equiv 0\pmod px≡0(modp) ,因此 xp−1≢0(modp)x^{p-1}\not\equiv 0\pmod pxp−1≡0(modp) ,所以 pxp−1≢0(modp2)px^{p-1}\not\equiv0\pmod {p^2}pxp−1≡0(modp2) 。
接下来采用归纳方式证明模数为奇质数的情况:
证明:
不妨设 vp(n)=α,n=pαmv_p(n)=\alpha,n=p^\alpha mvp(n)=α,n=pαm 。
易知
xn−yn=xpαm−ypαm=(xpα)m−(ypα)m=(xpα−ypα)(xm−1+xm−2y+⋯+ym−1)
\begin{aligned}
x^n-y^n &= x^{p^\alpha m}-y^{p^\alpha m} = \big(x^{p^\alpha }\big)^m - \big(y^{p^\alpha }\big)^m \\
&=\big(x^{p^\alpha} - y^{p^\alpha}\big)(x^{m-1}+x^{m-2}y+\dots+y^{m-1})
\end{aligned}
xn−yn=xpαm−ypαm=(xpα)m−(ypα)m=(xpα−ypα)(xm−1+xm−2y+⋯+ym−1)
由引理 111 的证明过程有 xm−1≡xm−2y≡⋯≡ym−1(modp)x^{m-1}\equiv x^{m-2}y\equiv \dots\equiv y^{m-1}\pmod pxm−1≡xm−2y≡⋯≡ym−1(modp) 。
则上式中右边括号可化简为
xm−1+xm−2y+⋯+ym−1≡mxm−1(modp)
x^{m-1}+x^{m-2}y+\dots+y^{m-1}\equiv mx^{m-1} \pmod p
xm−1+xm−2y+⋯+ym−1≡mxm−1(modp)
根据 vp(n)v_p(n)vp(n) 的定义可知 pα+1∤np^{\alpha + 1}\nmid npα+1∤n ,故 p∤mp\nmid mp∤m ,又 x≢0(modp)x\not\equiv0\pmod px≡0(modp) ,因此 xm−1≢0(modp)x^{m-1}\not\equiv0\pmod pxm−1≡0(modp) ,所以 mxm−1≢0(modp)mx^{m-1}\not\equiv0\pmod pmxm−1≡0(modp) 。
因此
vp(xn−yn)=vp(xpα−ypα)+vp(xm−1+xm−2y+⋯+ym−1)=vp(xpα−ypα)
v_p(x^n-y^n)=v_p(x^{p^{\alpha}}-y^{p^{\alpha}}) + v_p(x^{m-1}+x^{m-2}y+\dots+y^{m-1})=v_p(x^{p^\alpha}-y^{p^\alpha})
vp(xn−yn)=vp(xpα−ypα)+vp(xm−1+xm−2y+⋯+ym−1)=vp(xpα−ypα)
根据引理 111 开始归纳
vp(xn−yn)=vp(xpα−ypα)=vp((xpα−1)p−(ypα−1)p)=vp(xpα−1−ypα−1)+1=…=vp(x−y)+α=vp(x−y)+vp(n) \begin{aligned} v_p(x^n-y^n)&=v_p\Big(x^{p^\alpha}-y^{p^\alpha}\Big) \\ &=v_p\Big((x^{p^{\alpha - 1}})^p - (y^{p^{\alpha - 1}})^p\Big) \\ &=v_p\Big(x^{p^{\alpha-1}}-y^{p^{\alpha - 1}}\Big) + 1 \\ &= \dots \\ &=v_p(x - y) + \alpha \\ &=v_p(x - y) + v_p(n) \end{aligned} vp(xn−yn)=vp(xpα−ypα)=vp((xpα−1)p−(ypα−1)p)=vp(xpα−1−ypα−1)+1=…=vp(x−y)+α=vp(x−y)+vp(n)
模数为 222
引理 222 :当 n∈Z+n\in \mathbb{Z_+}n∈Z+ ,x,yx,yx,y 为奇整数且满足 4∣(x−y)4\mid (x-y)4∣(x−y) 时,v2(xn−yn)=v2(x−y)+nv_2(x^n-y^n)=v_2(x-y)+nv2(xn−yn)=v2(x−y)+n 。
证明:
nnn 为奇数时显然。
nnn 为偶数时,不妨设 v2(n)=α,n=2αmv_2(n)=\alpha,n=2^\alpha mv2(n)=α,n=2αm 。根据证明奇质数的情况时得到的结论,有
v2(xn−yn)=v2(x2αm−y2αm)=v2(x2α−y2α)
v_2(x^n-y^n)=v_2\Big(x^{2^\alpha m} - y^{2^\alpha m}\Big) = v_2\Big(x^{2^{\alpha}} - y^{2^{\alpha}}\Big)
v2(xn−yn)=v2(x2αm−y2αm)=v2(x2α−y2α)
根据平方差公式 x2α−y2α=(x2α−1+y2α−1)(x2α−1−y2α−1)x^{2^{\alpha}} - y^{2^{\alpha}} = \Big(x^{2^{\alpha - 1}}+y^{2^{\alpha - 1}}\Big)\Big(x^{2^{\alpha - 1}} - y^{2^{\alpha -1}}\Big)x2α−y2α=(x2α−1+y2α−1)(x2α−1−y2α−1) 不断展开得
x2α−y2α=(x2α−1+y2α−1)(x2α−2+y2α−2)…(x+y)(x−y)
x^{2^{\alpha}} - y^{2^{\alpha}} = \Big(x^{2^{\alpha - 1}}+y^{2^{\alpha - 1}}\Big)\Big(x^{2^{\alpha - 2}}+y^{2^{\alpha - 2}}\Big)\dots(x+y)(x-y)
x2α−y2α=(x2α−1+y2α−1)(x2α−2+y2α−2)…(x+y)(x−y)
因此
v2(x2α−y2α)=v2(x2α−1+y2α−1)+v2(x2α−2+y2α−2)+⋯+v2(x+y)+v2(x−y)
v_2\Big(x^{2^{\alpha}} - y^{2^{\alpha}}\Big)=v_2\Big(x^{2^{\alpha - 1}}+y^{2^{\alpha - 1}}\Big)+v_2\Big(x^{2^{\alpha - 2}}+y^{2^{\alpha - 2}}\Big)+\dots+v_2(x+y)+v_2(x-y)
v2(x2α−y2α)=v2(x2α−1+y2α−1)+v2(x2α−2+y2α−2)+⋯+v2(x+y)+v2(x−y)
因为 x,yx,yx,y 都是奇整数,所以 x≡±1(mod4)x\equiv \pm1\pmod 4x≡±1(mod4) 且 y≡±1(mod4)y\equiv \pm 1\pmod 4y≡±1(mod4) ,分别两边平方得 x2≡y2≡1(mod4)x^2\equiv y^2\equiv1\pmod 4x2≡y2≡1(mod4) ,不断平方可推广至 x2k≡y2k≡1(mod4),k∈Z+x^{2^k}\equiv y^{2^k}\equiv1\pmod 4,k\in\mathbb{Z_+}x2k≡y2k≡1(mod4),k∈Z+ ,因此 x2k+y2k≡2(mod4)x^{2^{k}}+y^{2^{k}}\equiv 2\pmod 4x2k+y2k≡2(mod4) ,故 v2(x2k+y2k)=1v_2\Big(x^{2^{k}}+y^{2^{k}}\Big)=1v2(x2k+y2k)=1 。据此可继续化简得
v2(x2α−y2α)=1×(α−1)+v2(x+y)+v2(x−y)=v2(x+y)+v2(x−y)+α−1
v_2\Big(x^{2^{\alpha}} - y^{2^{\alpha}}\Big)=1\times(\alpha-1)+v_2(x+y)+v_2(x-y)=v_2(x+y)+v_2(x-y)+\alpha-1
v2(x2α−y2α)=1×(α−1)+v2(x+y)+v2(x−y)=v2(x+y)+v2(x−y)+α−1
又 4∣x−y4\mid x-y4∣x−y ,因此 x≡y≡1(mod4)x\equiv y\equiv 1\pmod 4x≡y≡1(mod4) 或者 x≡y≡3(mod4)x\equiv y\equiv 3\pmod 4x≡y≡3(mod4) ,无论如何,有 x+y≡2(mod4)x+y\equiv 2\pmod 4x+y≡2(mod4) ,故 v2(x+y)=1v_2(x+y)=1v2(x+y)=1 。因此
v2(x2α−y2α)=1+v2(x−y)+α−1=v2(x−y)+α=v2(x−y)+v2(n)
v_2\Big(x^{2^{\alpha}} - y^{2^{\alpha}}\Big)=1+v_2(x-y)+\alpha - 1=v_2(x-y)+\alpha=v_2(x-y)+v_2(n)
v2(x2α−y2α)=1+v2(x−y)+α−1=v2(x−y)+α=v2(x−y)+v2(n)
接下来根据引理 222 证明模数为 222 的情况:
当 nnn 为奇数时显然。
当 nnn 为偶数时,不妨设 v2(n)=α,n=2αmv_2(n)=\alpha,n=2^\alpha mv2(n)=α,n=2αm 。根据证明奇质数的情况时得到的结论,有
v2(xn−yn)=v2(x2αm−y2αm)=v2(x2α−y2α)=v2((x2)2α−1−(y2)2α−1)
v_2(x^n-y^n)=v_2\Big(x^{2^\alpha m} - y^{2^\alpha m}\Big) = v_2\Big(x^{2^{\alpha}} - y^{2^{\alpha}}\Big)=v_2\Big((x^2)^{2^{\alpha - 1}}-(y^2)^{2^{\alpha - 1}}\Big)
v2(xn−yn)=v2(x2αm−y2αm)=v2(x2α−y2α)=v2((x2)2α−1−(y2)2α−1)
因为 x,yx,yx,y 都是奇整数,所以 x≡±1(mod4)x\equiv \pm1\pmod 4x≡±1(mod4) 且 y≡±1(mod4)y\equiv \pm 1\pmod 4y≡±1(mod4) ,分别两边平方得 x2≡y2≡1(mod4)x^2\equiv y^2\equiv1\pmod 4x2≡y2≡1(mod4) ,根据引理 222 得
v2((x2)2α−1−(y2)2α−1)=v2(x2−y2)+α−1=v2(x+y)+v2(x−y)+v2(n)−1
\begin{aligned}
v_2\Big((x^2)^{2^{\alpha - 1}}-(y^2)^{2^{\alpha - 1}}\Big)&=v_2(x^2-y^2)+\alpha - 1 \\
&=v_2(x+y) + v_2(x-y)+v_2(n) - 1
\end{aligned}
v2((x2)2α−1−(y2)2α−1)=v2(x2−y2)+α−1=v2(x+y)+v2(x−y)+v2(n)−1
1133

被折叠的 条评论
为什么被折叠?



