MarkDown数学公式的详解
例子:∑ni=0i2=(n2+n)(2n+1)6
求和公式(1):∑ni=0
求和公式(2):
∑i=0ni2
使一对或者两对$号,可以用不同方式显示
大写 | 表达式 | 小写 | 表达式 |
---|---|---|---|
A | A | α | \alpha |
B | B | β | \beta |
Γ | \Gamma | γ | \gamma |
Δ | \Delta | δ | \delta |
E | E | ϵ | \epsilon |
ε | \varepsilon | ||
Z | Z | ζ | \zeta |
H | H | η | \eta |
Θ | \Theta | θ | \theta |
I | I | ι | \iota |
K | K | κ | \kappa |
Λ | \Lambda | λ | \lambda |
M | M | μ | \mu |
N | N | ν | \nu |
Ξ | \Xi | ξ | \xi |
O | O | ο | \omicron |
Π | \Pi | π | \pi |
P | P | ρ | \rho |
Σ | \Sigma | σ | \sigma |
T | T | τ | \tau |
Υ | \Upsilon | υ | \upsilon |
Φ | \Phi | ϕ | \phi |
φ φ | \varphi | ||
X | X | χ | \chi |
Ψ | \Psi | ψ | \psi |
Ω | \Omega | ω | \omega |
ℓ | \ell | ||
E | \mathcal{E} | ||
εE | \varepsilon{E} |
表达式 | 代码 |
---|---|
7x+51+y2 | \frac{7x+5}{1+y^2} |
z=z1 | z=z_l |
⋯ | \cdots |
2√;3√n | \sqrt{2};\sqrt[n]{3} |
a⃗ ⋅b⃗ =0 | \vec{a} \cdot \vec{b}=0 |
∫23x2dx | \int ^2_3 x^2 {\rm d}x |
limn→+∞n | \lim_{n\rightarrow+\infty} n |
limn→+∞n | 加双$$ |
∑1i2 | \sum \frac{1}{i^2} |
∏1i2 | \prod \frac{1}{i^2} |
sin | \sin |
cos | \cos |
tan | \tan |
ln15 | \ln15 |
log210 | \log_2 10 |
lg7 | \lg7 |
± | \pm |
∓ | \mp |
× | \times |
÷ | \div |
∑ | \sum |
∫ | \int |
∬ | \iint |
∏ | \prod |
≠ | \neq |
≤ | \leq |
≥ | \geq |
< | \lt |
> | \gt |
≮ | \not \lt |
⋆ | \star |
∗ | \ast |
⊕ | \oplus |
∘ | \circ |
∙ | \bullet |
⋃ | \bigcup |
⋂ | \bigcap |
表达式 | 代码 |
---|---|
∑ni=0i2=(n2+n)(2n+1)6 | \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} |
xyz | {x^y}^z |
xyz | x^{y^z} |
x2i | x_i^2 |
xi2 | x_{i^2} |
ab | \frac ab |
()[] | ()[] |
{and} | \{ and \} |
x√y3 | \frac{\sqrt x}{y^3} |
(x√y3) | \left (\frac{\sqrt x}{y^3} \right) |
(((((x))))) | \Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr) |
|| | \vert |
∑∞i=0i2 | \sum_{i=0}^\infty i^2 |
a+1b+1 | {a+1\over b+1} |
\mathbb | \mathbb |
\Bbb | \Bbb |
\mathbf | \mathbf,\mathcal,\mathtt,\mathscr,\mathfrak |
...1/2 | {…}^{1/2} |
limx→0 | \lim_{x\to 0} |
(n+12k) | {n+1 \choose 2k},\binom{n+1}{2k} |
集合论
表达式 | 代码 |
---|---|
∪ | \cup |
∩ | \cap |
∖ | \setminus |
⊂ | \subset |
⊆ | \subseteq |
⊊ | \subsetneq |
⊃ | \supset |
∈ | \in |
∉ | \notin |
∅ | \emptyset |
∅ | \varnothing |
其他符号
表达式 | 代码 |
---|---|
→ | \to |
→ | \rightarrow |
← | \leftarrow |
⇒ | \Rightarrow |
⇐ | \Leftarrow |
↦ | \mapsto |
∧ | \land |
∨ | \lor |
¬ | \lnot |
∀ | \forall |
∃ | \exists |
⊤ | \top |
⊥ | \bot |
⊢ | \vdash |
⊨ | \vDash |
≈ | \approx |
∼ | \sim |
≃ | \simeq |
≅ | \cong |
≡ | \equiv |
≺ | \prec |
⊲ | \lhd |
ℵ0 | \infty \aleph_0 |
∞ | \infty |
∇ | \nabla |
∂ | \partial |
I | \Im |
R | \Re |
a≡b(modn) | a\equiv b\pmod n |
d^ | \hat{d} |
xˆ | \widehat{x} |
x¯ | \bar{x} |
xy¯¯¯¯ | \overline{xy} |
x⃗ | \vec{x} |
xyz−→− | \overrightarrow{xyz} |
xy←→ | \overleftrightarrow{xy} |
B | \mathrm{B} |
Spec | \operatorname{Spec} |
5C3 | _5C_3 |
矩阵
111xyzx2y2z2
$$
\begin{matrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{matrix}
$$
⎛⎝⎜111xyzx2y2z2⎞⎠⎟
$$
\begin{pmatrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{pmatrix}
$$
⎡⎣⎢111xyzx2y2z2⎤⎦⎥
$$
\begin{bmatrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{bmatrix}
$$
⎧⎩⎨⎪⎪111xyzx2y2z2⎫⎭⎬⎪⎪
$$
\begin{Bmatrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{Bmatrix}
$$
∣∣∣∣∣∣⋯⋱1xy⋮x2y2z2∣∣∣∣∣∣
$$
\begin{vmatrix}
\cdots & x & x^2 \\
\ddots & y & y^2 \\
1 & \vdots & z^2 \\
\end{vmatrix}
$$
∥∥∥∥∥111xyzx2y2z2∥∥∥∥∥
$$
\begin{Vmatrix}
1 & x & x^2 \\
1 & y & y^2 \\
1 & z & z^2 \\
\end{Vmatrix}
$$
142536
\begin{array}{cc|c}
1&2&3\\
4&5&6
\end{array}
37−−√=732−1122−−−−−−−√=732122⋅732−1732−−−−−−−−−−−√=732122−−−−√732−1732−−−−−−−√=73121−1732−−−−−−−√≈7312(1−12⋅732)
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\
& = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\
& \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}
f(n)={n/2,3n+1,if n is evenif n is odd
$$f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
if n is even:if n is odd:n/23n+1}=f(n)
$$
\left.
\begin{array}{l}
\text{if $n$ is even:}&n/2\\
\text{if $n$ is odd:}&3n+1
\end{array}
\right\}
=f(n)
$$
f(n)=⎧⎩⎨n2,3n+1,if n is evenif n is odd
$$
f(n) =
\begin{cases}
\frac{n}{2}, & \text{if $n$ is even} \\[2ex]
3n+1, & \text{if $n$ is odd}
\end{cases}
$$
n123Left0.24−1−20Center11892000Right125−81+10i
$$
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
$$
Badeiπ2eiπ2∫π2−π2sinxdxBettereiπ/2∫π/2−π/2sinxdx
\begin{array}{ll} \hfill\mathrm{Bad}\hfill & \hfill\mathrm{Better}\hfill \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array}
Bad{x|x2∈Z}Better{x∣x2∈Z}
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\{x|x^2\in\Bbb Z\} & \{x\mid x^2\in\Bbb Z\} \\
\end{array}
Bad∫∫Sf(x)dydx∫∫∫Vf(x)dzdydxBetter∬Sf(x)dydx∭Vf(x)dzdydx
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\int\int_S f(x)\,dy\,dx & \iint_S f(x)\,dy\,dx \\
\int\int\int_V f(x)\,dz\,dy\,dx & \iiint_V f(x)\,dz\,dy\,dx
\end{array}
{x∣∣∣x22∈z}
$$\left\{x\middle | \frac{x^2}{2} \in \mathbb{z}\right\}$$
\color{black}{text}\color{gray}{text}\color{silver}{text}\color{white}{text}\color{maroon}{text}\color{red}{text}\color{yellow}{text}\color{lime}{text}\color{olive}{text}\color{green}{text}\color{teal}{text}\color{aqua}{text}\color{blue}{text}\color{navy}{text}\color{purple}{text}\color{fuchsia}{text}texttexttexttexttexttexttexttexttexttexttexttexttexttexttexttext
\begin{array}{|rc|}
\hline
\verb+\color{black}{text}+ & \color{black}{text} \\
\verb+\color{gray}{text}+ & \color{gray}{text} \\
\verb+\color{silver}{text}+ & \color{silver}{text} \\
\verb+\color{white}{text}+ & \color{white}{text} \\
\hline
\verb+\color{maroon}{text}+ & \color{maroon}{text} \\
\verb+\color{red}{text}+ & \color{red}{text} \\
\verb+\color{yellow}{text}+ & \color{yellow}{text} \\
\verb+\color{lime}{text}+ & \color{lime}{text} \\
\verb+\color{olive}{text}+ & \color{olive}{text} \\
\verb+\color{green}{text}+ & \color{green}{text} \\
\verb+\color{teal}{text}+ & \color{teal}{text} \\
\verb+\color{aqua}{text}+ & \color{aqua}{text} \\
\verb+\color{blue}{text}+ & \color{blue}{text} \\
\verb+\color{navy}{text}+ & \color{navy}{text} \\
\verb+\color{purple}{text}+ & \color{purple}{text} \\
\verb+\color{fuchsia}{text}+ & \color{magenta}{text} \\
\hline
\end{array}
#000#F00texttext#0F0#FF0texttext#00F#F0Ftexttext#0FF#FFFtexttext
#000#500#A00#F00#080#580#A80#F80#0F0#5F0#AF0#FF0texttexttexttexttexttexttexttexttexttexttexttext#005#505#A05#F05#085#585#A85#F85#0F5#5F5#AF5#FF5texttexttexttexttexttexttexttexttexttexttexttext#00A#50A#A0A#F0A#08A#58A#A8A#F8A#0FA#5FA#AFA#FFAtexttexttexttexttexttexttexttexttexttexttexttext#00F#50F#A0F#F0F#08F#58F#A8F#F8F#0FF#5FF#AFF#FFFtexttexttexttexttexttexttexttexttexttexttexttext
[引用文献][1]
[1]: https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
[2]:http://blog.youkuaiyun.com/zdk930519/article/details/54137476