MarkDown数学公式的详解

本文详细介绍了如何使用MarkDown语法来展示各种数学公式,包括希腊字母、运算符、上下标、分数、根号、极限、积分等,并提供了大量实例帮助理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MarkDown数学公式的详解


例子:ni=0i2=(n2+n)(2n+1)6

求和公式(1):ni=0

求和公式(2):

i=0ni2
使一对或者两对$号,可以用不同方式显示

大写表达式小写表达式
AAα\alpha
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ε\varepsilon
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma
TTτ\tau
Υ\Upsilonυ\upsilon
Φ\Phiϕ\phi
φ φ\varphi
XXχ\chi
Ψ\Psiψ\psi
Ω\Omegaω\omega
\ell
E\mathcal{E}
εE\varepsilon{E}

表达式代码
7x+51+y2\frac{7x+5}{1+y^2}
z=z1z=z_l
\cdots
2;3n\sqrt{2};\sqrt[n]{3}
a⃗ b⃗ =0\vec{a} \cdot \vec{b}=0
23x2dx\int ^2_3 x^2 {\rm d}x
limn+n\lim_{n\rightarrow+\infty} n
limn+n
加双$$
1i2\sum \frac{1}{i^2}
1i2\prod \frac{1}{i^2}
sin\sin
cos\cos
tan\tan
ln15\ln15
log210\log_2 10
lg7\lg7
±\pm
\mp
×\times
÷\div
\sum
\int
\iint
\prod
\neq
\leq
\geq
<\lt
>\gt
\not \lt
\star
\ast
\oplus
\circ
\bullet
\bigcup
\bigcap

表达式代码
ni=0i2=(n2+n)(2n+1)6\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}
xyz{x^y}^z
xyzx^{y^z}
x2ix_i^2
xi2x_{i^2}
ab\frac ab
()[]()[]
{and}\{ and \}
xy3\frac{\sqrt x}{y^3}
(xy3)\left (\frac{\sqrt x}{y^3} \right)
(((((x)))))\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)
||\vert
i=0i2\sum_{i=0}^\infty i^2
a+1b+1{a+1\over b+1}
\mathbb\mathbb
\Bbb\Bbb
\mathbf\mathbf,\mathcal,\mathtt,\mathscr,\mathfrak
...1/2{…}^{1/2}
limx0
\lim_{x\to 0}
(n+12k){n+1 \choose 2k},\binom{n+1}{2k}

集合论

表达式代码
\cup
\cap
\setminus
\subset
\subseteq
\subsetneq
\supset
\in
\notin
\emptyset
\varnothing

其他符号

表达式代码
\to
\rightarrow
\leftarrow
\Rightarrow
\Leftarrow
\mapsto
\land
\lor
¬\lnot
\forall
\exists
\top
\bot
\vdash
\vDash
\approx
\sim
\simeq
\cong
\equiv
\prec
\lhd
0\infty \aleph_0
\infty
\nabla
\partial
I\Im
R\Re
ab(modn)a\equiv b\pmod n
d^\hat{d}
xˆ\widehat{x}
x¯\bar{x}
xy¯¯¯¯\overline{xy}
x⃗ \vec{x}
xyz\overrightarrow{xyz}
xy\overleftrightarrow{xy}
B\mathrm{B}
Spec\operatorname{Spec}
5C3_5C_3

矩阵

111xyzx2y2z2
$$
    \begin{matrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{matrix}
$$

111xyzx2y2z2
$$
    \begin{pmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{pmatrix}
$$

111xyzx2y2z2
$$
    \begin{bmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{bmatrix}
$$

111xyzx2y2z2
$$
    \begin{Bmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{Bmatrix}
$$

1xyx2y2z2
$$
    \begin{vmatrix}
    \cdots & x & x^2 \\
    \ddots & y & y^2 \\
    1 & \vdots & z^2 \\
    \end{vmatrix}
$$ 

111xyzx2y2z2
$$
    \begin{Vmatrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    \end{Vmatrix}
$$

142536
\begin{array}{cc|c}
  1&2&3\\
  4&5&6
\end{array}

37=7321122=7321227321732=7321227321732=7312117327312(112732)

\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
 & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ 
 & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\
 & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ 
 & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right)
\end{align}

f(n)={n/2,3n+1,if n is evenif n is odd
$$f(n) =
\begin{cases}
n/2,  & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$

if n is even:if n is odd:n/23n+1}=f(n)
$$
\left.
\begin{array}{l}
\text{if $n$ is even:}&n/2\\
\text{if $n$ is odd:}&3n+1
\end{array}
\right\}
=f(n)
$$

f(n)=n2,3n+1,if n is evenif n is odd
$$
f(n) =
\begin{cases}
\frac{n}{2},  & \text{if $n$ is even} \\[2ex]
3n+1, & \text{if $n$ is odd}
\end{cases}
$$

n123Left0.24120Center11892000Right12581+10i
$$
\begin{array}{c|lcr}
n & \text{Left} & \text{Center} & \text{Right} \\
\hline
1 & 0.24 & 1 & 125 \\
2 & -1 & 189 & -8 \\
3 & -20 & 2000 & 1+10i
\end{array}
$$

Badeiπ2eiπ2π2π2sinxdxBettereiπ/2π/2π/2sinxdx
\begin{array}{ll} \hfill\mathrm{Bad}\hfill & \hfill\mathrm{Better}\hfill \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array}

Bad{x|x2Z}Better{xx2Z}
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\{x|x^2\in\Bbb Z\} & \{x\mid x^2\in\Bbb Z\} \\
\end{array}

BadSf(x)dydxVf(x)dzdydxBetterSf(x)dydxVf(x)dzdydx
\begin{array}{cc}
\mathrm{Bad} & \mathrm{Better} \\
\hline \\
\int\int_S f(x)\,dy\,dx & \iint_S f(x)\,dy\,dx \\
\int\int\int_V f(x)\,dz\,dy\,dx & \iiint_V f(x)\,dz\,dy\,dx
\end{array}

{xx22z}
$$\left\{x\middle | \frac{x^2}{2} \in \mathbb{z}\right\}$$

\color{black}{text}\color{gray}{text}\color{silver}{text}\color{white}{text}\color{maroon}{text}\color{red}{text}\color{yellow}{text}\color{lime}{text}\color{olive}{text}\color{green}{text}\color{teal}{text}\color{aqua}{text}\color{blue}{text}\color{navy}{text}\color{purple}{text}\color{fuchsia}{text}texttexttexttexttexttexttexttexttexttexttexttexttexttexttexttext
\begin{array}{|rc|}
\hline
\verb+\color{black}{text}+ & \color{black}{text} \\
\verb+\color{gray}{text}+ & \color{gray}{text} \\
\verb+\color{silver}{text}+ & \color{silver}{text} \\
\verb+\color{white}{text}+ & \color{white}{text} \\
\hline
\verb+\color{maroon}{text}+ & \color{maroon}{text} \\
\verb+\color{red}{text}+ & \color{red}{text} \\
\verb+\color{yellow}{text}+ & \color{yellow}{text} \\
\verb+\color{lime}{text}+ & \color{lime}{text} \\
\verb+\color{olive}{text}+ & \color{olive}{text} \\
\verb+\color{green}{text}+ & \color{green}{text} \\
\verb+\color{teal}{text}+ & \color{teal}{text} \\
\verb+\color{aqua}{text}+ & \color{aqua}{text} \\
\verb+\color{blue}{text}+ & \color{blue}{text} \\
\verb+\color{navy}{text}+ & \color{navy}{text} \\
\verb+\color{purple}{text}+ & \color{purple}{text} \\ 
\verb+\color{fuchsia}{text}+ & \color{magenta}{text} \\
\hline
\end{array}

#000#F00texttext#0F0#FF0texttext#00F#F0Ftexttext#0FF#FFFtexttext

#000#500#A00#F00#080#580#A80#F80#0F0#5F0#AF0#FF0texttexttexttexttexttexttexttexttexttexttexttext#005#505#A05#F05#085#585#A85#F85#0F5#5F5#AF5#FF5texttexttexttexttexttexttexttexttexttexttexttext#00A#50A#A0A#F0A#08A#58A#A8A#F8A#0FA#5FA#AFA#FFAtexttexttexttexttexttexttexttexttexttexttexttext#00F#50F#A0F#F0F#08F#58F#A8F#F8F#0FF#5FF#AFF#FFFtexttexttexttexttexttexttexttexttexttexttexttext
[引用文献][1]
[1]: https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
[2]:http://blog.youkuaiyun.com/zdk930519/article/details/54137476
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值