Flash外部配置器件在SOPC中的应用

本文探讨了在SOPC系统中使用Flash存储器的方法,包括保存FPGA配置文件及用户程序。介绍了如何利用Altera的开发工具创建目标板编程描述,并详细说明了使用Flash Programmer工具进行编程的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 Flash在SOPC中的作用
  Flash在SOPC中的作用主要表现在两方面:一方面,可用Flash来保存FPGA的配置文件,从而可以省去EPCS芯片或解决EPCS芯片容量不够的问题。当系统上电后,从Flash中读取配置文件,对FPGA进行配置。另一方面,可用Flash来保存用户程序。对于较为复杂的SOPC系统,用户程序一般较大,用EPCS来存储是不现实的。系统完成配置后,将Flash中的用户程序转移到外接RAM或片内配置生成的RAM中,然后系统开始运行。
   2 Flash编程的实现
  本文以某项目的具体电路为例,阐述在SOPC系统中如何利用Flash来保存用户程序。FPGA为Altera公司的 Cyclone EP1C6,Flash为AMD公司的AM29LV160D,外接RAM为Samsung公司的K4S643232H,串行配置器件为EPCS1。开发工具采用Altera公司提供的QuartusII和NioslI软件。
  NiosII的开发环境中提供了Flash Programmer工具,对目标板上遵守CFI(Common Flash Interface)规范的Flash进行编程。CFI是一种Flash接口规范,只要Flash符合该规范,通过专门的命令就能获得其详细的参数,并根据这些参数访问Flash。利用Altera公司的下载电缆,Flash Programmer工具可以对Flash器件中的任意偏移地址进行任意内容的编程。Flash Programmer工具对Flash编程分为2个步骤:
  ①根据目标板编程描述对FPGA进行配置;
  ②Flash Programmer工具将要编程到Flash的文件内容传送到FPGA的数据缓冲区,然后FPGA将收到的数据写入Flash中。
   2.1 目标板编程描述的创建
  目标板编程描述实际就是一个由SOPC Builder系统生成的最小FPGA设计,其作用是对FPGA进行适当配置以实现对Flash的编程。不同的电路板(目标板)往往使用不同的Flash 器件,并且Flash与FPGA的引脚连接以及FPGA的型号也不相同,因此每个目标板编程描述都是与具体的目标板相关联的,不能用于其他目标板。目标板提供了Flash Programmer工具对Flash进行编程的全部信息,包括Flash的容量、Flash的引脚连接等。
  一个目标板编程描述包含以下信息:每个接到FPGA上Flash器件的参考元件标号;Flash器件在目标板编程描述中的基地址;用于配置FPGA的SOF文件。
  目标板编程描述的创建分2步:
  ①在Nios SDK Shell中使用mk_target_board命令创建一个工程模板;
  ②使用SoPC Builder对模板进行编辑,从而形成完整的目标板编程描述。
  每个目标板编程描述应包含下列元件:NiosII CPU;JTAG_UART接口;本目标板中采用串行配置器件EPCS存储FPGA的配置文件,因此需要Active Serial MemoryInterface(ASMI);Tri-State Bridge(三态桥);CFI接口的Flash;System ID Peripheral;用于存放程序以及作为数据缓冲的On-chip memory。
  下面以本目标板为例,介绍创建目标板编程描述的步骤:
  ①启动NiosII SDK shell;
  ②运行mk_target_board命令,创建一个目标板Flash编程描述模板(参数 name=flash_board,family=cyclone,clock=80,index=1,epcs=U5,buffer_size=2 048,class=flash_programer);
  ③启动QuartusII软件并打开刚才创建的目标板编程描述工程flash_programer.qPf;
  ④在QuartusII软件中选择Assignments→Device打开setting对话框,选取FPGA型号,本例为EP1C6Q240C8;
  ⑤启动SOPC Builder,在Target选项区的Board下拉列表框中选择Unspecified Board,Clock栏的时钟频率取50 MHz,在模板的基础上添加三态桥Avalon Tri-State Bridge和CFI接口的Flash(Flash的参考标号为U5,地址为20位,数据为16位);
  ⑥选择System Generation选项卡,关闭Simulation选项,然后单击Generate按钮;
  ⑦当生成完成后,退出SOPC Builder,并返回到QuartuslI;

  ⑧在QuartuslI中更新原理图,然后添加、链接并命名引脚;
  ⑨进行引脚分配,确保与FPGA各引脚的连接一致;
  ⑩编译并保存工程。
  编译成功后,目标板编程描述即成功创建。打开SOPC Builder即可在Target选项区的Board下拉列表框中找到该目标板编程描述,本例为flash_board。(该目标板编程描述的顶层图略——编者注)
  创建好的目标板编程描述在任何设计的SOPC Builder中都能使用。如果想让该目标板编程描述在其他PC机上使用,将整个设计文件夹拷贝到NiosII安装路径<安装盘>\altera\kits\nios2\components目录下即可。
  2.2 使用Flash Programmer工具编程Flash
  目标板编程描述创建后会在SOPC Builder中的Target选项区的Board下拉列表框中显示出来。本例中所创建的目标板编程描述为flash_board。目标板编程描述创建后就可以在目标板上进行用户SOPC系统的开发了,并能将用户程序编程到Flash存储器件中。采用EPCS器件存储配置文件、Flash器件存储用户程序的SOPC系统的开发流程如图1所示。

  用Flash Programmer工具对Flash编程的步骤如下:
  ①创建项目,构建SOPC硬件系统。
  ②启动NiosII,建立SOPC系统的软件然后进行编译、链接。
  ③在NiosII中选中要进行编程的工程,然后选择Tools→Flash Programmer,打开Flash Programmer窗口。
  ④Main选项中,选中Program software project in-to flash memory project,表示要将工程的flash_progra-mer.elf文件写入Flash。对flash_programer.elf文件的编程,在 Flash Programmer窗口中并没有存储器和偏移地址的设置。存储器和偏移地址由SOPC Builder中的Reset Address指向的存储器和设置的偏移地址决定。如果将Reset Address指向Flash、偏移地址从0x00开始,那么Flash Programmer就会从Flash的“基地址+0x00”开始烧写数据。如果将Reset Address指向EPCS Controller、偏移地址从0x00开始,那么Flash Programmer就会从EPCS的“基地址+配置数据空间+0x00”开始烧写数据。
  ⑤选择Target Connection选项卡,在JTAG cable和JTAG device栏中选中当前所用的下载电缆和JTAG器件。
  ⑥单击Apply按钮,然后单击Program Flash按钮,开始对指定的Flash存储器编程。
  当完成Flash编程后,由于当前的EPCS中的配置文件是目标板编程描述的配置文件,所以写入Flash的用户程序并不会马上运行。用户需要给系统重新上电,使FPGA使用EPCS中的配置文件重新配置FPGA,此时用户程序就能正常运行。
  结 语
  本文针SOPC系统开发所面临的问题,提出采用外接Flash存储器件是最直接、最有效的解决方法。将FPGA的配置文件存入EPCS、用户程序存人Flash器件,SOPC系统上电后首先进行配置,然后将Flash中的用户程序载入系统RAM,这样不仅解决了存储容量的问题,也解决了Flash存取速度较慢的问题。本文对外接Flash的SOPC系统开发有一定的参考价

内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气流速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证与误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气流速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值