Oulipo POJ - 3461
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN
Sample Output
1
3
0
题意:T组数据,下面分别为p,s,求s中有多少个p
思路:KMP
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<utility>
#include<set>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#define maxn1 1000005
#define maxn2 10005
#define INF 0x3f3f3f3f
#define LL long long
#define ULL unsigned long long
#define E 1e-8
#define mod 1000000007
#define P pair<int,int>
using namespace std;
int n,m;
char s[maxn1];
char p[maxn2];
int nexts[maxn2];
void GetNexts()
{
int j=0,k=-1;
nexts[0] = -1;
while(j<m){
if(k==-1||p[j]==p[k]){
j++;
k++;
nexts[j] = k;
}
else
k = nexts[k];
}
/*for(int i=0;i<6;++i){
printf("next[%d] = %d\n",i,nexts[i]);
}*/
}
int KMP()
{
int i=0,j=0,cnt=0;
GetNexts();
while(i<n){
if(j==-1||s[i]==p[j]){
i++;
j++;
}
else
j = nexts[j];
if(j==m){
cnt++;
j = nexts[j]; //不知道为啥,没有这句话竟然也能过。。。
}
}
return cnt;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%s%s",p,s);
m = strlen(p);
n = strlen(s);
printf("%d\n",KMP());
}
return 0;
}
如果是让求s中有多少个单独的p,也就是p不能交叉,比如以下案例:
6(T)
abab
ababab
ans=1
abab
abababab
ans=2
aza
azazaza
ans=2
代码为(不保证正确性):
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<utility>
#include<set>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#define maxn1 1000005
#define maxn2 10005
#define INF 0x3f3f3f3f
#define LL long long
#define ULL unsigned long long
#define E 1e-8
#define mod 1000000007
#define P pair<int,int>
using namespace std;
int n,m;
char s[maxn1];
char p[maxn2];
int nexts[maxn2];
void GetNexts()
{
int j=0,k=-1;
nexts[0] = -1;
while(j<m){
if(k==-1||p[j]==p[k]){
j++;
k++;
nexts[j] = k;
}
else
k = nexts[k];
}
}
int KMP()
{
int i=0,j=0,cnt=0;
GetNexts();
while(i<n){
if(j==-1||s[i]==p[j]){
i++;
j++;
}
else
j = nexts[j];
if(j==m){
cnt++;
j = 0;
}
}
return cnt;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%s%s",p,s);
m = strlen(p);
n = strlen(s);
printf("%d\n",KMP());
}
return 0;
}