hdoj 1856 more is better (如何记录节点数)

本文介绍了一道编号为1856的HDU在线评测题目“Moreisbetter”的解决思路。该题涉及1000万个候选人,通过一系列直接朋友关系找出能够形成间接朋友关系的最大群体规模。文章提供了完整的C++代码实现,采用并查集算法进行高效处理。

  题目                :http://acm.hdu.edu.cn/showproblem.php?pid=1856

More is better

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 327680/102400 K (Java/Others)
Total Submission(s): 19180    Accepted Submission(s): 7054


Problem Description
Mr Wang wants some boys to help him with a project. Because the project is rather complex,  the more boys come, the better it will be. Of course there are certain requirements.

Mr Wang selected a room big enough to hold the boys. The boy who are not been chosen has to leave the room immediately. There are 10000000 boys in the room numbered from 1 to 10000000 at the very beginning. After Mr Wang's selection any two of them who are still in this room should be friends (direct or indirect), or there is only one boy left. Given all the direct friend-pairs, you should decide the best way.
 

Input
The first line of the input contains an integer n (0 ≤ n ≤ 100 000) - the number of direct friend-pairs. The following n lines each contains a pair of numbers A and B separated by a single space that suggests A and B are direct friends. (A ≠ B, 1 ≤ A, B ≤ 10000000)
 

Output
The output in one line contains exactly one integer equals to the maximum number of boys Mr Wang may keep. 
 

Sample Input
  
4 1 2 3 4 5 6 1 6 4 1 2 3 4 5 6 7 8
 

Sample Output
  
4 2
Hint
A and B are friends(direct or indirect), B and C are friends(direct or indirect), then A and C are also friends(indirect). In the first sample {1,2,5,6} is the result. In the second sample {1,2},{3,4},{5,6},{7,8} are four kinds of answers.
 

<span style="font-size:14px;">#include<stdio.h>
#include<algorithm>
using namespace std;
int a,b;
int per[10000010];
int n,num[10000010];
int inf;
void init()
{
	for(int i=1;i<=1000000;i++)   //开数组的时候要注意尾标不能大于等于数组长度 
	{
		per[i]=i;
		num[i]=1;  //初始化每个根节点的数量都是1 
	}
}

/*int find(int x){ //路径压缩迭代版本  
    int r = x;  
    while(r!=per[r])   
        r = per[r];//肇东根节点  
    while(x!=r){ //将这棵树上的节点都指向根节点  
        int tmp = per[x];  
       per[x] = r;  
        x= tmp;  
    }  
    return r;  
}*/ 

int find(int x)
{
	if(x==per[x])
	return x;
	else
	return per[x]=find(per[x]);
}
int join(int x,int y)
{
	int fx=find(x);
	int fy=find(y);
	if(fx!=fy)
	{
		per[fx]=fy;
		num[fy]+=num[fx];  //记录根节点的上节点数量,总把子节点的数量加在父节点上		
	}
	if(num[fy]>inf) 
	inf=num[fy];   //不断保存父节点的节点数最大值 
}
int main()
{
	int i;
	while(scanf("%d",&n)!=EOF)
	{
		init();
		inf=1;
		for(i=1;i<=n;i++)		
	   {
	   		scanf("%d%d",&a,&b);
	   		join(a,b);
	   }
	   
		printf("%d\n",inf);
		
	}
}</span>


基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值