hibernate的1+n问题

本文探讨了在ORM框架如Hibernate中常见的N+1查询问题,包括一对多、多对一及迭代器查询等场景,并提供了几种解决方案,例如启用懒加载、使用二级缓存以及改变抓取策略。
转自:http://blog.sina.com.cn/s/blog_9ed7f0d701019b1w.html
问题什么时候会遇到N+1的问题?

备注 Hibernate默认抓取策略是fetch="select",不是fetch="join",这都是为了延迟加载而准备的。

出现情况
         1)一对多(one-to-many) ,在1的这方,通过1条sql查找得到了1个对象(指的是有N个外键关联),由于关联的存在 ,那么又需要将这个对象关联的集合取出,所以合集数量是n还要发出n条sql,于是本来的1条sql查询变成了    1 +n条 。

         2)多对一  ,在多的这方,通过1条sql查询得到了n个对象,由于关联的存在,也会将这n个对象对应的1 方的对象取出, 于是本来的1条sql查询变成了1 +n条 。

         3)iterator 查询时,一定先去缓存中找(1条sql查集合,只查出ID),在没命中时,会再按ID到库中逐一查找, 产生1+n条SQL。


解决办法

          1)lazy=true, hibernate3开始已经默认是lazy=true了;lazy=true时不会立刻查询关联对象,只有当需要关联对象(访问其属性,非id字段)时才会发生查询动作。

          2)使用二级缓存, 二级缓存的应用将不怕1+N 问题,因为即使第一次查询很慢(未命中),以后查询直接缓存命中也是很快的。刚好又利用了1+N 。

          3 ) 当然你也可以设定fetch="join",一次关联表全查出来,但失去了延迟加载的特性。


先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值