详析数字图像中高斯模糊理论及实现

高斯模糊是一种图像处理技术,用于减少噪声和降低细节层次。它基于高斯函数对像素进行加权平均,权重随着距离的增加而减小。本文详细介绍了高斯模糊的原理,包括周边像素的平均值、正态分布权重、二维高斯函数、权重矩阵的计算以及高斯模糊的实现。并提供了Java和MATLAB的简单实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯模糊(英语:Gaussian Blur),也叫高斯平滑,是在Adobe Photoshop、GIMP以及Paint.NET等图像处理软件中广泛使用的处理效果,通常用它来减少图像噪声以及降低细节层次。
简介:高斯模糊(Gaussian Blur)是美国Adobe图像软件公司开发的一个图像处理软件:Adobe Photoshop(系列)中的一个滤镜,具体的位置在:滤镜—模糊——高斯模糊!高斯模糊的原理中,它是根据高斯曲线调节像素色值,它是有选择地模糊图像。说得直白一点,就是高斯模糊能够把某一点周围的像素色值按高斯曲线统计起来,采用数学上加权平均的计算方法得到这条曲线的色值,最后能够留下人物的轮廓,即曲线.是指当 Adobe Photoshop 将加权平均应用于像素时生成的钟形曲线。
原理:
1 周边像素的平均值
所谓”模糊”,可以理解成每一个像素都取周边像素的平均值。
这里写图片描述
上图中,2是中间点,周边点都是1。”中间点”取”周围点”的平均值,就会变成1。在数值上,这是一种”平滑化”。在图形上,就相当于产生”模糊”效果,”中间点”失去细节。
显然,计算平均值时,取值范围越大,”模糊效果”越强烈。
这里写图片描述
上图分别是原图、模糊半径3像素、模糊半径10像素的效果。模糊半径越大,图像就越模糊。从数值角度看,就是数值越平滑。
接下来的问题就是,既然每个点都要取周边像素的平均值,那么应该如何分配权重呢?
如果使用简单平均,显然不是很合理,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系越疏远。因此,加权平均更合理,距离越近的点权重越大,距离越远的点权重越小。
2 正态分布权重
正态分布显然是一种可取的权重分配模式。
在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。计算平均值的时候,我们只需要将”中心点”作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。这里写图片描述
3 高斯函数
上面的正态分布是一维的,图像都是二维的,所以我们需要二维的正态分布。正态分布的密度函数叫做”高斯函数”(Gaussian function)。它的一维形式是:
这里写图片描述

其中,μ是x的均值,σ是x的方差。因为计算平均值的时候,中心点就是原公式进一步推导,因为计算平均值的时候,中心点就是原点,所以μ等于0。根据一维高斯函数,可以推导得到二维高斯函数:
这里写图片描述
有了这个函数 ,就可以计算每个点的权重了。
4 权重矩阵
假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下,则权重前的矩阵为:
这里写图片描述

为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下:
这里写图片描述
这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。
这里写图片描述
5 计算高斯模糊

有了权重矩阵,就可以计算高斯模糊的值了。假设现有9个像素点,灰度值(0-255)如下:
这里写图片描述
每个点乘以自己的权重值:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值