机器学习(一)k-近邻算法

本文介绍了k近邻算法的基本原理及实现过程。该算法通过计算未知数据与已知数据之间的距离来判断未知数据的分类。文章详细展示了算法的五个主要步骤,并通过一个具体的例子进行了演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

 

k-近邻算法步骤如下

  1. 计算已知类别数据集中的点与当前点之间的距离;
  2. 按照距离递增次序排序;
  3. 选取与当前点距离最小的k个点;
  4. 确定前k个点所在类别的出现频率;
  5. 返回前k个点所出现频率最高的类别作为当前点的预测分类。

 

# encoding=utf-8
__author__ = 'SK'

import numpy as np
import collections

"""
函数说明:创建数据集

Parameters:
	无
Returns:
	group - 数据集
	labels - 分类标签
"""
def createDataSet():
	#四组二维特征
	group = np.array([[1,101],[5,89],[108,5],[115,8]])
	#四组特征的标签
	labels = ['爱情片','爱情片','动作片','动作片']
	return group, labels

"""
函数说明:kNN算法,分类器

Parameters:
	inX - 用于分类的数据(测试集)
	dataSet - 用于训练的数据(训练集)
	labes - 分类标签
	k - kNN算法参数,选择距离最小的k个点
Returns:
	sortedClassCount[0][0] - 分类结果
"""
def classify0(inx, dataset, labels, k):
	# 计算距离
	dist = np.sum((inx - dataset)**2, axis=1)**0.5
	# k个最近的标签
	k_labels = [labels[index] for index in dist.argsort()[0 : k]]
	# 出现次数最多的标签即为最终类别
	label = collections.Counter(k_labels).most_common(1)[0][0]
	return label

if __name__ == '__main__':
	#创建数据集
	group, labels = createDataSet()
	#测试集
	test = [101,20]
	#kNN分类
	test_class = classify0(test, group, labels, 3)
	#打印分类结果
	print(test_class)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值