Hdu 1533 Going Home

本文介绍了一个基于网格地图的最小费用匹配问题,通过寻找最经济的路径将小人与房屋进行一对一匹配。使用了匈牙利算法(KM算法)实现,并详细展示了算法流程及核心代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Going Home

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5405    Accepted Submission(s): 2830

Problem Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point.

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

 

 

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

 

 

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

 

 

Sample Input

2 2

.m

H.

5 5

HH..m

.....

.....

.....

mm..H

7 8

...H....

...H....

...H....

mmmHmmmm

...H....

...H....

...H....

0 0

 

 

Sample Output

2

10

28

/*其实在求最大 最小的时候只要用一个模板就行了,把边的权值去相反数即可得到另外一个.求结果的时候再去相反数即可*/
/*最大最小有一些地方不同。。*/
#include<string.h>
#include<stdio.h>
#include<math.h>int fx,fy;
const int maxn = 301;
const int INF = 0xffffff;
struct node
{
    int x,y;
}sx[maxn],sy[maxn];
int w[maxn][maxn];
int lx[maxn],ly[maxn]; //顶标int linky[maxn];
int visx[maxn],visy[maxn];
int slack[maxn];

bool find(int x)
{
    visx[x] = true;
    for(int y = 1; y <=fy; y++)
    {
        if(visy[y])
            continue;
        int t = lx[x] + ly[y] - w[x][y];
        if(t==0)
        {
            visy[y] = true;
            if(linky[y]==-1 || find(linky[y]))
            {
                linky[y] = x;
                return true;        //找到增广轨            }
        }
        else if(slack[y] > t)
            slack[y] = t;
    }
    return false;                   //没有找到增广轨(说明顶点x没有对应的匹配,与完备匹配(相等子图的完备匹配)不符)}

int KM()                //返回最优匹配的值{
    int i,j;

    memset(linky,-1,sizeof(linky));
    memset(ly,0,sizeof(ly));
    for(i = 1; i <=fx; i++)
    {
        lx[i] = -INF;
         for(j = 1; j <=fy; j++)
            if(w[i][j] > lx[i])
                lx[i] = w[i][j];
    }

    for(int x = 1; x <=fx; x++)
    {
        for(i = 1; i <=fy; i++)
            slack[i] = INF;
        while(true)
        {
            memset(visx,0,sizeof(visx));
            memset(visy,0,sizeof(visy));
            if(find(x))                     //找到增广轨,退出                break;
            int d = INF;
            for(i = 1; i <=fy; i++)          //没找到,对l做调整(这会增加相等子图的边),重新找            {
                if(!visy[i] && d > slack[i])
                    d = slack[i];
            }
            for(i = 1; i <=fx; i++)
            {
                if(visx[i])
                    lx[i] -= d;
            }
            for(i = 1; i <=fy; i++)
            {
                if(visy[i])
                     ly[i] += d;
                else
                    slack[i] -= d;
            }
        }
    }
    int result = 0;
    for(i = 1; i <=fy; i++)
    if(linky[i]>-1)
        result += w[linky[i]][i];
    return result;
}

int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m),n+m)
    {
        char cost[maxn];
        int i,j;fx=0,fy=0;
        for( i=0;i<n;i++)
        {
             scanf("%s",cost);
             for(int j=0;j<m;j++)
             if(cost[j]=='m')
             sx[++fx].x=i,sx[fx].y=j;
             else if(cost[j]=='H')
             sy[++fy].x=i,sy[fy].y=j;
        }
        for(i=1;i<=fx;i++)
        {
           for(j=1;j<=fy;j++)
           {
              int xx=fabs(sx[i].y-sy[j].y)+fabs(sx[i].x-sy[j].x);
              w[i][j]=-xx;
           }
 
        }

        printf("%d\n",-KM());
    }
    return 0;
}

  

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值