多人部件解析--Towards Real World Human Parsing: Multiple-Human Parsing in the Wild

Towards Real World Human Parsing: Multiple-Human Parsing in the Wild
https://arxiv.org/abs/1705.07206

数据库没给出来啊!

本文针对当前 human parsing 数据库基本都是单人标记,而图像实际情况经常含有多人,这里我们提出了一个 Multiple-Human Parsing (MHP) 数据库,一般2-16人每张图像。接着我们提出了一个 Multiple-Human Parser (MH-Parser) 算法,在单人解析过程中同时考虑 global context and local cues,得到不错的效果。

先看数据库:
这里写图片描述
这里写图片描述

各个数据库规模:
这里写图片描述

Dataset statistics
这里写图片描述

MH-Parser:
这里写图片描述

MH-Parser 主要包含五个模块:
1)Representation learner: 是一个CNN特征器,它提取的特征由后面几个模块共享,这里使用全卷积网络,以保持 spatial 信息

2)Global parser : 获取整幅图像的全局信息,生成 a semantic parsing map of the whole image

3) Candidate nominator:包括三个子模块 Region Proposal Network (RPN), a bounding box classifier
and a bounding box regression,类似于 Faster RCNN,将每个人检测出来,得到矩形框

4)Local parser: 针对每个含有人的矩形框,进行 semantic labels 语义标记

5)Global-local aggregator :同时将 local parser and the global parser 网络中隐含的信息输入,用于单人矩形框的 semantic parsing predictions

4.2 Detect-and-parse baseline

检测阶段和解析阶段是分离的:
In the detection stage, we use the representation learner and the candidate nominator as the detection
model.

In the parsing stage, we use the representation learner and the local prediction as the
the parsing model.

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值