print(np.char.add(['hello'],['xyz']))print(np.char.add(['hello','hi'],['abc','xyz']))print(np.char.center('Baidu',20, fillchar ='*'))print(np.char.capitalize('baidu'))print(np.char.title('i like baidu'))print(np.char.lower(['BAIDU','GOOGLE']))print(np.char.lower('BAIDU'))print(np.char.upper(['baidu','google']))print(np.char.upper('baidu'))'''
['helloxyz']
['helloabc' 'hixyz']
*******Baidu********
Baidu
I Like Baidu
['baidu' 'google']
baidu
['BAIDU' 'GOOGLE']
BAIDU
'''
print(np.char.split('i like baidu?'))print(np.char.split('www.baidu.com', sep ='.'))print(np.char.splitlines('i\nlike baidu?'))print(np.char.splitlines('i\rlike baidu?'))print(np.char.strip('ashok abaidua','a'))print(np.char.strip(['abaidua','admin','java'],'a'))print(np.char.join(':','baidu'))print(np.char.join([':','-'],['baidu','google']))print(np.char.replace('i like baidu','oo','cc'))print(np.char.encode('baidu','cp500'))print(np.char.decode(np.char.encode('baidu','cp500'),'cp500'))'''
['i', 'like', 'baidu?']
['www', 'baidu', 'com']
['i', 'like baidu?']
['i', 'like baidu?']
shok abaidu
['baidu' 'dmin' 'jav']
b:a:i:d:u
['b:a:i:d:u' 'g-o-o-g-l-e']
i like baidu
np.bytes_(b'\x82\x81\x89\x84\xa4')
baidu
'''
# 练习print(np.char.add(['越努力','充满'],['越幸运','正能量']))print('努力学习'*3)print(np.char.center('我要努力',20,'*'))print(np.char.capitalize('numpy'))print(np.char.title('i learn python and numpy.'))
a = np.char.upper('i hard work everyday.')print(a, np.char.lower(a))print(np.char.split(['www.baidu.com','www.python.org'],'.'))# 原始字符串列表
str_list =["admin","java","aheada"]# 使用列表推导式去除每个字符串开头和结尾的字符 'a'# 这里使用 str.lstrip('a') 去除开头的 'a',str.rstrip('a') 去除结尾的 'a'
cleaned_str_list =[s.lstrip('a').rstrip('a')for s in str_list]# 将处理后的字符串列表转换为 NumPy 数组
cleaned_str_array = np.array(cleaned_str_list)print(cleaned_str_array)print(np.char.replace(['这个','那个'],'个','些'))print(np.char.encode(['努力','学习']), np.char.decode([b'\xe5\x8a\xaa\xe5\x8a\x9b',b'\xe5\xad\xa6\xe4\xb9\xa0']))'''
['越努力越幸运' '充满正能量']
努力学习努力学习努力学习
********我要努力********
Numpy
I Learn Python And Numpy.
I HARD WORK EVERYDAY. i hard work everyday.
[list(['www', 'baidu', 'com']) list(['www', 'python', 'org'])]
['dmin' 'jav' 'head']
['这些' '那些']
[b'\xe5\x8a\xaa\xe5\x8a\x9b' b'\xe5\xad\xa6\xe4\xb9\xa0'] ['努力' '学习']
'''
# 定义数组
arr1 = np.array([[2,8,6],[7,3,2],[1,4,9]])
arr2 = np.array([[10,8,6],[2,2,1]])
arr3 = np.array([[50,60,70],[80,90,90],[60,90,80]])
arr4 = np.array([[2,3,4],[4,5,6],[5,6,7]])
arr5 = np.array([1,2,3,4])
arr6 = np.array([[0,1],[2,0],[3,5]])
arr7 = np.array([1,2,3,4,5])# 求取数组中的最小值,最大值,及每行每列的最小值和最大值
min_value = np.amin(arr1)
max_value = np.amax(arr1)
min_values_per_row = np.amin(arr1, axis=1)
max_values_per_row = np.amax(arr1, axis=1)
min_values_per_column = np.amin(arr1, axis=0)
max_values_per_column = np.amax(arr1, axis=0)# 求取数组的极差,及每行每列的极差
range_value = np.ptp(arr1)
range_values_per_row = np.ptp(arr1, axis=1)
range_values_per_column = np.ptp(arr1, axis=0)# 求数组arr2的50%分位数及每行每列的结果,要求维度不变
percentile_50_arr2 = np.percentile(arr2,50, keepdims=True)# 求数组arr3的中位数及每行每列的结果
median_arr3 = np.median(arr3)
median_per_row_arr3 = np.median(arr3, axis=1)
median_per_column_arr3 = np.median(arr3, axis=0)# 求数组arr4的算术平均值及每行每列的结果
mean_arr4 = np.mean(arr4)
mean_per_row_arr4 = np.mean(arr4, axis=1)
mean_per_column_arr4 = np.mean(arr4, axis=0)# 求数组arr5受权重数组的加权平均值并返回权重和
weights_arr5 = np.array([4,3,2,1])
average_arr5 = np.average(arr5, weights=weights_arr5)
total_weights_arr5 = weights_arr5.sum()# 求数组arr6受权重数组的每行加权平均值并返回权重和
row_weights_arr6 = np.array([2,3])
weighted_means_per_row_arr6 = np.average(arr6, axis=1, weights=row_weights_arr6)
total_weights_arr6 = row_weights_arr6.sum()# 求数组arr7的标准差和方差
std_dev_arr7 = np.std(arr7)
variance_arr7 = np.var(arr7)# 打印结果print(f"Minimum Value of arr1: {min_value}")print(f"Maximum Value of arr1: {max_value}")print(f"Range Value of arr1: {range_value}")print(f"50th Percentile of arr2: {percentile_50_arr2.ravel()}")print(f"Median of arr3: {median_arr3}")print(f"Mean of arr4: {mean_arr4}")print(f"Weighted Average of arr5: {average_arr5} with Total Weights {total_weights_arr5}")print(f"Weighted Means per Row of arr6: {weighted_means_per_row_arr6} with Total Weights {total_weights_arr6}")print(f"Standard Deviation of arr7: {std_dev_arr7}")print(f"Variance of arr7: {variance_arr7}")'''
Minimum Value of arr1: 1
Maximum Value of arr1: 9
Range Value of arr1: 8
50th Percentile of arr2: [4.]
Median of arr3: 80.0
Mean of arr4: 4.666666666666667
Weighted Average of arr5: 2.0 with Total Weights 10
Weighted Means per Row of arr6: [0.6 0.8 4.2] with Total Weights 5
Standard Deviation of arr7: 1.4142135623730951
Variance of arr7: 2.0
'''
x = np.array([3,1,2])
y = np.argsort(x)print(y)print('以排序后的顺序重构原数组:')print(x[y])print('使用循环重构原数组:')for i in y:print(x[i], end='')'''
[1 2 0]
以排序后的顺序重构原数组:
[1 2 3]
使用循环重构原数组:
123
'''