多任务03-线程

线程

python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用

1. 使用threading模块

单线程执行

#coding=utf-8
import time

def saySorry():
    print("亲爱的,我错了,我能吃饭了吗?")
    time.sleep(1)

if __name__ == "__main__":
    for i in range(5):
        saySorry()

终端命令: python + 文件名

运行结果:

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

多线程执行

#coding=utf-8
import threading
import time

def saySorry():
    print("亲爱的,我错了,我能吃饭了吗?")
    time.sleep(1)

if __name__ == "__main__":
    for i in range(5):
        t = threading.Thread(target=saySorry)
        t.start() #启动线程,即让线程开始执行

终端命令: python + 文件名

运行结果:

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

亲爱的,我错了,我能吃饭了吗?

说明

  1. 可以明显看出使用了多线程并发的操作,花费时间要短很多
  2. 当调用start()时,才会真正的创建线程,并且开始执行

2. 主线程会等待所有的子线程结束后才结束

#coding=utf-8
import threading
from time import sleep,ctime

def sing():
    for i in range(3):
        print("正在唱歌...%d"%i)
        sleep(1)

def dance():
    for i in range(3):
        print("正在跳舞...%d"%i)
        sleep(1)

if __name__ == '__main__':
    print('---开始---:%s'%ctime())

    t1 = threading.Thread(target=sing)
    t2 = threading.Thread(target=dance)

    t1.start()
    t2.start()

    #sleep(5) # 屏蔽此行代码,试试看,程序是否会立马结束?
    print('---结束---:%s'%ctime())

终端命令: python + 文件名

运行结果:

---开始---

正在唱歌...0

---结束---

正在跳舞...0

正在唱歌...1

正在跳舞...1

正在唱歌...2

正在跳舞...2

3. 查看线程数量

#coding=utf-8
import threading
from time import sleep,ctime

def sing():
    for i in range(3):
        print("正在唱歌...%d"%i)
        sleep(1)

def dance():
    for i in range(3):
        print("正在跳舞...%d"%i)
        sleep(1)

if __name__ == '__main__':
    print('---开始---:%s'%ctime())

    t1 = threading.Thread(target=sing)
    t2 = threading.Thread(target=dance)

    t1.start()
    t2.start()

    while True:
        length = len(threading.enumerate())
        print('当前运行的线程数为:%d'%length)
        if length<=1:
            break

        sleep(0.5)

终端命令: python + 文件名

运行结果:

正在唱歌...0

当前运行的线程数为:3

正在跳舞...0

当前运行的线程数为:3

当前运行的线程数为:3

正在唱歌...1

正在跳舞...1

当前运行的线程数为:3

当前运行的线程数为:3

正在唱歌...2

正在跳舞...2

当前运行的线程数为:3

当前运行的线程数为:1

内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值