问题描述:
课后习题8.10:利用推广的方法证明NP-完全性。对以下每个问题请通过证明它是本章某个NP-完全问题的推广说明它是NP-完全
的。
(a)子图同构:给定两个作为输入的无向图G和H,判断G是否为H的一个子图(即删除H中的某些顶点或边后,所得的新图最多只
需再修改某些顶点的名称,即可与G相同),且如果是,返回由V(G)到V(H)相关映射。
(b)最长路径:给定图G和整数g,求G中一条长为g的简单路径。
(c)最大SAT:给定一个CNF公式和整数g,求满足其中至少g个子句的真赋值。
(d)稠密子图:给定一个图和两个整数a和b,求G中的a个顶点,使得它们之间最少有b条边。
(e)稀疏子图:给定一个图和两个整数a和b,求G中的a个顶点,使得它们之间最多有b条边。
(f )集合覆盖。(该问题衍生了两个著名的NP-完全问题。)
(g)可靠网络:给定两个nxn的矩阵,一个距离矩阵dij,一个连接需求矩阵rij以及预算b。我们要求一个图G=({1,2,......,n},E)

这篇博客探讨了如何证明NP-完全性,涉及子图同构、最长路径、最大SAT等问题,并通过转化为其他已知的NP-完全问题如Rudrata回路、SAT和旅行商问题进行推广证明。
最低0.47元/天 解锁文章
1294

被折叠的 条评论
为什么被折叠?



