用C++实现二叉树的三种遍历方式

- 非递归实现代码:

#include<stdio.h>
#include<stdlib.h>
#include"data_structure.h"

//创建一棵二叉树
BTree create_tree()
{
    BTree pA = (BTree)malloc(sizeof(BTNode));
    BTree pB = (BTree)malloc(sizeof(BTNode));
    BTree pD = (BTree)malloc(sizeof(BTNode));
    BTree pE = (BTree)malloc(sizeof(BTNode));
    BTree pC = (BTree)malloc(sizeof(BTNode));
    BTree pF = (BTree)malloc(sizeof(BTNode));

    pA->data = 'A';
    pB->data = 'B';
    pD->data = 'D';
    pE->data = 'E';
    pC->data = 'C';
    pF->data = 'F';

    pA->pLchild = pB;
    pA->pRchild = pC;
    pB->pLchild = pD;
    pB->pRchild = pE;
    pD->pLchild = pD->pRchild = NULL;
    pE->pLchild = pE->pRchild = NULL;
    pC->pLchild = pF;
    pC->pRchild = NULL;
    pF->pLchild = pF->pRchild = NULL;   

    return pA;
}

/*
前序遍历的非递归实现
*/
void pre_traverse(BTree pTree)
{
    PSTACK stack = create_stack();  //创建一个空栈
    BTree node_pop;                 //用来保存出栈节点
    BTree pCur = pTree;             //定义用来指向当前访问的节点的指针

    //直到当前节点pCur为NULL且栈空时,循环结束
    while(pCur || !is_empty(stack))
    {
        //从根节点开始,输出当前节点,并将其入栈,
        //同时置其左孩子为当前节点,直至其没有左孩子,及当前节点为NULL
        printf("%c ", pCur->data);
        push_stack(stack,pCur);
        pCur = pCur->pLchild;
        //如果当前节点pCur为NULL且栈不空,则将栈顶节点出栈,
        //同时置其右孩子为当前节点,循环判断,直至pCur不为空
        while(!pCur && !is_empty(stack))
        {
            pCur = getTop(stack);
            pop_stack(stack,&node_pop);
            pCur = pCur->pRchild;           
        }
    }
}

/*
中序遍历的非递归实现
*/
void in_traverse(BTree pTree)
{
    PSTACK stack = create_stack();  //创建一个空栈
    BTree node_pop;                 //用来保存出栈节点
    BTree pCur = pTree;             //定义指向当前访问的节点的指针

    //直到当前节点pCur为NULL且栈空时,循环结束
    while(pCur || !is_empty(stack))
    {
        if(pCur->pLchild)
        {
            //如果pCur的左孩子不为空,则将其入栈,并置其左孩子为当前节点
            push_stack(stack,pCur);
            pCur = pCur->pLchild;
        }
        else
        {
            //如果pCur的左孩子为空,则输出pCur节点,并将其右孩子设为当前节点,看其是否为空
            printf("%c ", pCur->data);
            pCur = pCur->pRchild;
            //如果为空,且栈不空,则将栈顶节点出栈,并输出该节点,
            //同时将它的右孩子设为当前节点,继续判断,直到当前节点不为空
            while(!pCur && !is_empty(stack))
            {
                pCur = getTop(stack);
                printf("%c ",pCur->data);   
                pop_stack(stack,&node_pop);
                pCur = pCur->pRchild;
            }
        }
    }
}

/*
后序遍历的非递归实现
*/
void beh_traverse(BTree pTree)
{
    PSTACK stack = create_stack();  //创建一个空栈
    BTree node_pop;          //用来保存出栈的节点
    BTree pCur;              //定义指针,指向当前节点
    BTree pPre = NULL;       //定义指针,指向上一各访问的节点

    //先将树的根节点入栈
    push_stack(stack,pTree);  
    //直到栈空时,结束循环
    while(!is_empty(stack))
    {
        pCur = getTop(stack);   //当前节点置为栈顶节点
        if((pCur->pLchild==NULL && pCur->pRchild==NULL) || 
            (pPre!=NULL && (pCur->pLchild==pPre || pCur->pRchild==pPre)))
        {
            //如果当前节点没有左右孩子,或者有左孩子或有孩子,但已经被访问输出,
            //则直接输出该节点,将其出栈,将其设为上一个访问的节点
            printf("%c ", pCur->data);
            pop_stack(stack,&node_pop);
            pPre = pCur;
        }
        else
        {
            //如果不满足上面两种情况,则将其右孩子左孩子依次入栈
            if(pCur->pRchild != NULL)
                push_stack(stack,pCur->pRchild);
            if(pCur->pLchild != NULL)
                push_stack(stack,pCur->pLchild);
        }
    }
}

- 递归实现代码:

#include<stdio.h>
#include<stdlib.h>
typedef struct BTNode
{
    char data;
    struct BTNode *pLchild;
    struct BTNode *pRchild;
}BTNode, *BTree;

BTree create_tree();
void pre_traverse(BTree);
void in_traverse(BTree);
void beh_traverse(BTree);

int main()
{
    BTree pTree = create_tree();

    printf("递归实现前序遍历结果:");
    pre_traverse(pTree);
    printf("\n");

    printf("递归实现中序遍历结果:");
    in_traverse(pTree);
    printf("\n");

    printf("递归实现后序遍历结果:");
    beh_traverse(pTree);
    printf("\n");

    return 0;
}

BTree create_tree()
{
    BTree pA = (BTree)malloc(sizeof(BTNode));
    BTree pB = (BTree)malloc(sizeof(BTNode));
    BTree pD = (BTree)malloc(sizeof(BTNode));
    BTree pE = (BTree)malloc(sizeof(BTNode));
    BTree pC = (BTree)malloc(sizeof(BTNode));
    BTree pF = (BTree)malloc(sizeof(BTNode));

    pA->data = 'A';
    pB->data = 'B';
    pD->data = 'D';
    pE->data = 'E';
    pC->data = 'C';
    pF->data = 'F';

    pA->pLchild = pB;
    pA->pRchild = pC;
    pB->pLchild = pD;
    pB->pRchild = pE;
    pD->pLchild = pD->pRchild = NULL;
    pE->pLchild = pE->pRchild = NULL;
    pC->pLchild = pF;
    pC->pRchild = NULL;
    pF->pLchild = pF->pRchild = NULL;   

    return pA;
}

/*
前序遍历的递归实现
*/
void pre_traverse(BTree pTree)
{
    if(pTree)
    {
        printf("%c ",pTree->data);
        if(pTree->pLchild)
            pre_traverse(pTree->pLchild);
        if(pTree->pRchild)
            pre_traverse(pTree->pRchild);   
    }
}

/*
中序遍历的递归实现
*/
void in_traverse(BTree pTree)
{
    if(pTree)
    {
        if(pTree->pLchild)
            in_traverse(pTree->pLchild);
        printf("%c ",pTree->data);
        if(pTree->pRchild)
            in_traverse(pTree->pRchild);    
    }
}

/*
后序遍历的递归实现
*/
void beh_traverse(BTree pTree)
{
    if(pTree)
    {
        if(pTree->pLchild)
            beh_traverse(pTree->pLchild);
        if(pTree->pRchild)
            beh_traverse(pTree->pRchild);   
        printf("%c ",pTree->data);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值