到目前为止chatbot的工作流都是用户输入后等待应答,但有些情况下需要人工干预:
1)因为大模型本身不是可靠的,基于大模型的智能体也是不可靠的,需要人工输入以完成符合要求的任务
2)在工作流执行过程中,需要人工审核、修改等操作
在智能体语境下的人工干预也成为人机回环(human-in-the-loop)。langgraph的持久化层借助检查点支持人机回环的工作流。
在工作流执行过程中,在节点内部调用interrupt将暂停工作流的执行,用户完成处理后,可以从暂停点回复执行,并且可以获得用户输入的数据。
本文仍基于使用langgraph创建工作流系列3:增加记忆-优快云博客中的chatbot构建人机回环的chatbot。
1.增加工具
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_openai import ChatOpenAIfrom langgraph.prebuilt import ToolNode, tools_condition#支持工具调用
from langgraph.types import Command, interrupt#引入Command和interrupte支持人机回环
class State(TypedDict):
messages: Annotated[list, add_messages]graph_builder = StateGraph(State)
llm = ChatOpenAI(
model = 'qwen-plus',
api_key = "sk-*",
base_url = "https://dashscope.aliyuncs.com/compatible-mode/v1")#新增加支持人机回环的工具
@tool def human_assistance(query: str) -> str:
"""请求用户输入"""
human_response = interrupt({"query": query})
return human_response["data"]
tools = [human_assistance]
llm_with_tools = llm.bind_tools(tools)
tool_node = ToolNode(tools=tools) #生成工具节点
graph_builder.add_node("tools", tools) #把工具节点增加到工作流图中
def chatbot(state: State):
return {"messages": [llm.invoke(state["messages"])]}graph_builder.add_node("chatbot", chatbot)
graph_builder.add_conditional_edges( "chatbot", tools_condition, )
graph_builder.add_edge(START, "chatbot")
graph_builder.add_edge("chatbot", END)
graph = graph_builder.compile(checkpointer=memory)
2.触发用户介入
输入一个问题,触发用户介入,也就是调用新增的human_assistant方法。
user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"
config = {"configurable": {"thread_id": "1"}}events = graph.stream(
{"messages": [{"role": "user", "content": user_input}]},
config,
stream_mode="values",
)
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
返回数据如下。可见大模型指示调用human_assiatant,调用参数为原始问题。
================================ Human Message =================================
I need some expert guidance for building an AI agent. Could you request assistance for me?
================================== Ai Message ==================================
Tool Calls:
human_assistance (call_44b1fdebb102451faf8151)
Call ID: call_44b1fdebb102451faf8151
Args:
query: I need some expert guidance for building an AI agent. Could you request assistance for me?
查看工作流下一个节点:
snapshot = graph.get_state(config)
snapshot.next
输出为('tools",),可见工作流暂停在tools节点,也就是要调用human_assistant。等待用户介入:
('tools',)
3.模拟用户输入,恢复工作流执行
用用户输入构造一个Command对象,然后用Command作为参数调用graph.stream
#这里的Command对象很简单,可以根据实际需要构造
human_response = ( "We, the experts are here to help! We'd recommend you check out LangGraph to build your agent." " It's much more reliable and extensible than simple autonomous agents." )
#用用户输入包装一个Command对象,设置resume
human_command = Command(resume={"data": human_response})
events = graph.stream(human_command, config, stream_mode="values")
for event in events:
if "messages" in event: event["messages"][-1].pretty_print()
基于用户输出chatbot调用大模型后的输出如下:
================================== Ai Message ==================================
Tool Calls:
human_assistance (call_44b1fdebb102451faf8151)
Call ID: call_44b1fdebb102451faf8151
Args:
query: I need some expert guidance for building an AI agent. Could you request assistance for me?
================================= Tool Message =================================
Name: human_assistanceWe, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.
LangGraph实现人机回环工作流
1041

被折叠的 条评论
为什么被折叠?



