NFM

部署运行你感兴趣的模型镜像

# !/usr/bin/env python
# coding=utf-8
"""
TensorFlow Implementation of <<Neural Factorization Machines for Sparse Predictive Analytics>> with the fellowing features:
#1 Input pipline using Dataset high level API, Support parallel and prefetch reading
#2 Train pipline using Coustom Estimator by rewriting model_fn
#3 Support distincted training by TF_CONFIG
#4 Support export model for TensorFlow Serving
by lambdaji
"""
# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function
'''
structure
(LR+二次项=》MLP)=>sum result
'''
# import argparse
import shutil
# import sys
import os
import json
import glob
from datetime import date, timedelta
from time import time
# import gc
# from multiprocessing import Process

# import math
import random
# import pandas as pd
# import numpy as np
import tensorflow as tf

#################### CMD Arguments ####################
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}")
tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads")
tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features")
tf.app.flags.DEFINE_integer("field_size", 0, "Number of fields")
tf.app.flags.DEFINE_integer("embedding_size", 64, "Embedding size")
tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs")
tf.app.flags.DEFINE_integer("batch_size", 128, "Number of batch size")
tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps")
tf.app.flags.DEFINE_float("learning_rate", 0.05, "learning rate")
tf.app.flags.DEFINE_float("l2_reg", 0.001, "L2 regularization")
tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}")
tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}")
tf.app.flags.DEFINE_string("deep_layers", '128,64', "deep layers")
tf.app.flags.DEFINE_string("dropout", '0.5,0.8,0.8', "dropout rate")
tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)")
tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)")
tf.app.flags.DEFINE_string("data_dir", '', "data dir")
tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition")
tf.app.flags.DEFINE_string("model_dir", '', "model check point dir")
tf.app.flags.DEFINE_string("servable_model_dir", '', "export servable model for TensorFlow Serving")
tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}")
tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not")


# 1 1:0.5 2:0.03519 3:1 4:0.02567 7:0.03708 8:0.01705 9:0.06296 10:0.18185 11:0.02497 12:1 14:0.02565 15:0.03267 17:0.0247 18:0.03158 20:1 22:1 23:0.13169 24:0.02933 27:0.18159 31:0.0177 34:0.02888 38:1 51:1 63:1 132:1 164:1 236:1
def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
    print('Parsing', filenames)

    def decode_libsvm(line):
        # columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
        # features = dict(zip(CSV_COLUMNS, columns))
        # labels = features.pop(LABEL_COLUMN)
        columns = tf.string_split([line], ' ')
        labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
        splits = tf.string_split(columns.values[1:], ':')
        id_vals = tf.reshape(splits.values, splits.dense_shape)
        feat_ids, feat_vals = tf.split(id_vals, num_or_size_splits=2, axis=1)
        feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
        feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
        return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels

    # Extract lines from input files using the Dataset API, can pass one filename or filename list
    dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(
        500000)  # multi-thread pre-process then prefetch

    # Randomizes input using a window of 256 elements (read into memory)
    if perform_shuffle:
        dataset = dataset.shuffle(buffer_size=256)

    # epochs from blending together.
    dataset = dataset.repeat(num_epochs)
    dataset = dataset.batch(batch_size)  # Batch size to use

    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    # return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
    return batch_features, batch_labels


def model_fn(features, labels, mode, params):
    """Bulid Model function f(x) for Estimator."""
    # ------hyperparameters----
    field_size = params["field_size"]
    feature_size = params["feature_size"]
    embedding_size = params["embedding_size"]
    l2_reg = params["l2_reg"]
    learning_rate = params["learning_rate"]
    # optimizer = params["optimizer"]
    layers = map(int, params["deep_layers"].split(','))
    dropout = map(float, params["dropout"].split(','))

    # ------bulid weights------
    Global_Bias = tf.get_variable(name='bias', shape=[1], initializer=tf.constant_initializer(0.0))
    Feat_Bias = tf.get_variable(name='linear', shape=[feature_size], initializer=tf.glorot_normal_initializer())
    Feat_Emb = tf.get_variable(name='emb', shape=[feature_size, embedding_size],
                               initializer=tf.glorot_normal_initializer())

    # ------build feaure-------
    feat_ids = features['feat_ids']
    feat_ids = tf.reshape(feat_ids, shape=[-1, field_size])
    feat_vals = features['feat_vals']
    feat_vals = tf.reshape(feat_vals, shape=[-1, field_size])

    # ------build f(x)------
    with tf.variable_scope("Linear-part"):
        feat_wgts = tf.nn.embedding_lookup(Feat_Bias, feat_ids)  # None * F * 1
        y_linear = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals), 1)

    with tf.variable_scope("BiInter-part"):
        embeddings = tf.nn.embedding_lookup(Feat_Emb, feat_ids)  # None * F * K
        feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1])
        embeddings = tf.multiply(embeddings, feat_vals)  # vij * xi
        sum_square_emb = tf.square(tf.reduce_sum(embeddings, 1))
        square_sum_emb = tf.reduce_sum(tf.square(embeddings), 1)
        deep_inputs = 0.5 * tf.subtract(sum_square_emb, square_sum_emb)  # None * K

    with tf.variable_scope("Deep-part"):
        if mode == tf.estimator.ModeKeys.TRAIN:
            train_phase = True
        else:
            train_phase = False

        if mode == tf.estimator.ModeKeys.TRAIN:
            deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[0])  # None * K
        for i in range(len(layers)):
            deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], \
                                                            weights_regularizer=tf.contrib.layers.l2_regularizer(
                                                                l2_reg), scope='mlp%d' % i)

            if FLAGS.batch_norm:
                deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase,
                                               scope_bn='bn_%d' % i)  # 放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
            if mode == tf.estimator.ModeKeys.TRAIN:
                deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[
                    i])  # Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)
                # deep_inputs = tf.layers.dropout(inputs=deep_inputs, rate=dropout[i], training=mode == tf.estimator.ModeKeys.TRAIN)

        y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, \
                                                   weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg),
                                                   scope='deep_out')
        y_d = tf.reshape(y_deep, shape=[-1])

    with tf.variable_scope("NFM-out"):
        # y_bias = Global_Bias * tf.ones_like(labels, dtype=tf.float32)  # None * 1  warning;这里不能用label,否则调用predict/export函数会出错,train/evaluate正常;初步判断estimator做了优化,用不到label时不传
        y_bias = Global_Bias * tf.ones_like(y_d, dtype=tf.float32)  # None * 1
        y = y_bias + y_linear + y_d
        pred = tf.sigmoid(y)

    predictions = {"prob": pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(
            predictions)}
    # Provide an estimator spec for `ModeKeys.PREDICT`
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            export_outputs=export_outputs)

    # ------bulid loss------
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + \
           l2_reg * tf.nn.l2_loss(Feat_Bias) + l2_reg * tf.nn.l2_loss(Feat_Emb)

    # Provide an estimator spec for `ModeKeys.EVAL`
    eval_metric_ops = {
        "auc": tf.metrics.auc(labels, pred)
    }
    if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            loss=loss,
            eval_metric_ops=eval_metric_ops)

    # ------bulid optimizer------
    if FLAGS.optimizer == 'Adam':
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
    elif FLAGS.optimizer == 'Adagrad':
        optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8)
    elif FLAGS.optimizer == 'Momentum':
        optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95)
    elif FLAGS.optimizer == 'ftrl':
        optimizer = tf.train.FtrlOptimizer(learning_rate)

    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

    # Provide an estimator spec for `ModeKeys.TRAIN` modes
    if mode == tf.estimator.ModeKeys.TRAIN:
        return tf.estimator.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            loss=loss,
            train_op=train_op)

    # Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
    # return tf.estimator.EstimatorSpec(
    #        mode=mode,
    #        loss=loss,
    #        train_op=train_op,
    #        predictions={"prob": pred},
    #        eval_metric_ops=eval_metric_ops)


def batch_norm_layer(x, train_phase, scope_bn):
    bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True,
                                            updates_collections=None, is_training=True, reuse=None, scope=scope_bn)
    bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True,
                                            updates_collections=None, is_training=False, reuse=True, scope=scope_bn)
    z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer)
    return z


def set_dist_env():
    if FLAGS.dist_mode == 1:  # 本地分布式测试模式1 chief, 1 ps, 1 evaluator
        ps_hosts = FLAGS.ps_hosts.split(',')
        chief_hosts = FLAGS.chief_hosts.split(',')
        task_index = FLAGS.task_index
        job_name = FLAGS.job_name
        print('ps_host', ps_hosts)
        print('chief_hosts', chief_hosts)
        print('job_name', job_name)
        print('task_index', str(task_index))
        # 无worker参数
        tf_config = {
            'cluster': {'chief': chief_hosts, 'ps': ps_hosts},
            'task': {'type': job_name, 'index': task_index}
        }
        print(json.dumps(tf_config))
        os.environ['TF_CONFIG'] = json.dumps(tf_config)
    elif FLAGS.dist_mode == 2:  # 集群分布式模式
        ps_hosts = FLAGS.ps_hosts.split(',')
        worker_hosts = FLAGS.worker_hosts.split(',')
        chief_hosts = worker_hosts[0:1]  # get first worker as chief
        worker_hosts = worker_hosts[2:]  # the rest as worker
        task_index = FLAGS.task_index
        job_name = FLAGS.job_name
        print('ps_host', ps_hosts)
        print('worker_host', worker_hosts)
        print('chief_hosts', chief_hosts)
        print('job_name', job_name)
        print('task_index', str(task_index))
        # use #worker=0 as chief
        if job_name == "worker" and task_index == 0:
            job_name = "chief"
        # use #worker=1 as evaluator
        if job_name == "worker" and task_index == 1:
            job_name = 'evaluator'
            task_index = 0
        # the others as worker
        if job_name == "worker" and task_index > 1:
            task_index -= 2

        tf_config = {
            'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts},
            'task': {'type': job_name, 'index': task_index}
        }
        print(json.dumps(tf_config))
        os.environ['TF_CONFIG'] = json.dumps(tf_config)


def main(_):
    # ------check Arguments------
    if FLAGS.dt_dir == "":
        FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
    FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
    # FLAGS.data_dir  = FLAGS.data_dir + FLAGS.dt_dir

    print('task_type ', FLAGS.task_type)
    print('model_dir ', FLAGS.model_dir)
    print('data_dir ', FLAGS.data_dir)
    print('dt_dir ', FLAGS.dt_dir)
    print('num_epochs ', FLAGS.num_epochs)
    print('feature_size ', FLAGS.feature_size)
    print('field_size ', FLAGS.field_size)
    print('embedding_size ', FLAGS.embedding_size)
    print('batch_size ', FLAGS.batch_size)
    print('deep_layers ', FLAGS.deep_layers)
    print('dropout ', FLAGS.dropout)
    print('loss_type ', FLAGS.loss_type)
    print('optimizer ', FLAGS.optimizer)
    print('learning_rate ', FLAGS.learning_rate)
    print('l2_reg ', FLAGS.l2_reg)

    # ------init Envs------
    tr_files = glob.glob("%s/tr*libsvm" % FLAGS.data_dir)
    random.shuffle(tr_files)
    print("tr_files:", tr_files)
    va_files = glob.glob("%s/va*libsvm" % FLAGS.data_dir)
    print("va_files:", va_files)
    te_files = glob.glob("%s/te*libsvm" % FLAGS.data_dir)
    print("te_files:", te_files)

    if FLAGS.clear_existing_model:
        try:
            shutil.rmtree(FLAGS.model_dir)
        except Exception as e:
            print(e, "at clear_existing_model")
        else:
            print("existing model cleaned at %s" % FLAGS.model_dir)

    set_dist_env()

    # ------bulid Tasks------
    model_params = {
        "field_size": FLAGS.field_size,
        "feature_size": FLAGS.feature_size,
        "embedding_size": FLAGS.embedding_size,
        "learning_rate": FLAGS.learning_rate,
        "l2_reg": FLAGS.l2_reg,
        "deep_layers": FLAGS.deep_layers,
        "dropout": FLAGS.dropout
    }
    config = tf.estimator.RunConfig().replace(
        session_config=tf.ConfigProto(device_count={'GPU': 0, 'CPU': FLAGS.num_threads}),
        log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps)
    Estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config)

    if FLAGS.task_type == 'train':
        train_spec = tf.estimator.TrainSpec(
            input_fn=lambda: input_fn(tr_files, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size))
        eval_spec = tf.estimator.EvalSpec(
            input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None,
            start_delay_secs=1000, throttle_secs=1200)
        tf.estimator.train_and_evaluate(Estimator, train_spec, eval_spec)
    elif FLAGS.task_type == 'eval':
        Estimator.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size))
    elif FLAGS.task_type == 'infer':
        preds = Estimator.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=FLAGS.batch_size),
                                  predict_keys="prob")
        with open(FLAGS.data_dir + "/pred.txt", "w") as fo:
            for prob in preds:
                fo.write("%f\n" % (prob['prob']))
    elif FLAGS.task_type == 'export':
        # feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
        # feature_spec = {
        #    'feat_ids': tf.FixedLenFeature(dtype=tf.int64, shape=[None, FLAGS.field_size]),
        #    'feat_vals': tf.FixedLenFeature(dtype=tf.float32, shape=[None, FLAGS.field_size])
        # }
        # serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
        feature_spec = {
            'feat_ids': tf.placeholder(dtype=tf.int64, shape=[None, FLAGS.field_size], name='feat_ids'),
            'feat_vals': tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.field_size], name='feat_vals')
        }
        serving_input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec)
        Estimator.export_savedmodel(FLAGS.servable_model_dir, serving_input_receiver_fn)


if __name__ == "__main__":
    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run()

 

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

NFM (Neural Factorization Machines) 是一种结合了矩阵分解和深度学习技术的推荐系统模型。它在PyTorch库中实现复现通常涉及以下几个步骤: 1. **安装依赖**:首先需要安装PyTorch库以及相关的数据处理和科学计算库,如NumPy、Pandas。 ```python pip install torch torchvision numpy pandas ``` 2. **理解基础**:熟悉神经网络和因子分解的基本原理,理解NFM模型结构,包括用户和物品的嵌入层、交互层、以及可能的全连接层。 3. **模型构建**:在PyTorch中创建一个NFM类,包含输入、嵌入层、交互矩阵生成、以及预测等函数。例如,可以使用`nn.Embedding`模块进行嵌入,然后通过点积运算生成交互矩阵。 ```python class NFM(nn.Module): def __init__(self, num_users, num_items, emb_dim, hidden_units): super(NFM, self).__init__() self.user_embedding = nn.Embedding(num_users, emb_dim) self.item_embedding = nn.Embedding(num_items, emb_dim) self.interaction_layer = nn.Linear(emb_dim * 2, emb_dim) # 二阶项 self.fc_layers = nn.Sequential(*[nn.Linear(emb_dim, unit) for unit in hidden_units] + [nn.Linear(hidden_units[-1], 1)]) def forward(self, users, items): user_vecs = self.user_embedding(users) item_vecs = self.item_embedding(items) interaction = torch.cat((user_vecs * item_vecs, user_vecs + item_vecs), dim=-1) interaction = F.relu(self.interaction_layer(interaction)) fc_out = self.fc_layers(interaction) return fc_out ``` 4. **训练与优化**:准备数据,比如用户-物品评分对,使用PyTorch的损失函数(如均方误差MSE)和优化器(如Adam)来训练模型。 5. **评估与验证**:通过交叉验证或预留部分数据进行模型性能评估,如计算准确率、AUC等指标。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值