同步 异步 阻塞 非阻塞 (转载)

本文详细解释了同步、异步、阻塞和非阻塞的概念及其在编程中的应用。同步调用需要等待操作完成才能继续;异步调用通过事件或回调通知结果;阻塞调用会让线程等待直至操作完成;而非阻塞调用则不会阻塞线程。
同步:函数没有执行完不返回,线程被挂起

阻塞:没有收完数据函数不返回,线程也被挂起

异步:函数立即返回,通过事件或是信号通知调用者

非阻塞:函数立即返回,通过select通知调用者

--------------------------------------------------------------------------------------------------

同步
  所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回。按照这个定义,其实绝大多数函数都是同步调用(例如sin, isdigit等)。但是一般而言,我们在说同步、异步的时候,特指那些需要其他部件协作或者需要一定时间完成的任务。最常见的例子就是 SendMessage。该函数发送一个消息给某个窗口,在对方处理完消息之前,这个函数不返回。当对方处理完毕以后,该函数才把消息处理函数所返回的 LRESULT值返回给调用者。

异步
  异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。以 CAsycSocket类为例(注意,CSocket从CAsyncSocket派生,但是起功能已经由异步转化为同步),当一个客户端通过调用 Connect函数发出一个连接请求后,调用者线程立刻可以朝下运行。当连接真正建立起来以后,socket底层会发送一个消息通知该对象。这里提到执行 部件和调用者通过三种途径返回结果:状态、通知和回调。可以使用哪一种依赖于执行部件的实现,除非执行部件提供多种选择,否则不受调用者控制。如果执行部 件用状态来通知,那么调用者就需要每隔一定时间检查一次,效率就很低(有些初学多线程编程的人,总喜欢用一个循环去检查某个变量的值,这其实是一种很严重 的错误)。如果是使用通知的方式,效率则很高,因为执行部件几乎不需要做额外的操作。至于回调函数,其实和通知没太多区别。

阻塞
  阻塞调用是指调用结果返回之前,当前线程会被挂起。函数只有在得到结果之后才会返回。有人也许会把阻塞调用和同步调用等同起来,实际上他是不同的。对于同 步调用来说,很多时候当前线程还是激活的,只是从逻辑上当前函数没有返回而已。例如,我们在CSocket中调用Receive函数,如果缓冲区中没有数 据,这个函数就会一直等待,直到有数据才返回。而此时,当前线程还会继续处理各种各样的消息。如果主窗口和调用函数在同一个线程中,除非你在特殊的界面操 作函数中调用,其实主界面还是应该可以刷新。socket接收数据的另外一个函数recv则是一个阻塞调用的例子。当socket工作在阻塞模式的时候, 如果没有数据的情况下调用该函数,则当前线程就会被挂起,直到有数据为止。

非阻塞
  非阻塞和阻塞的概念相对应,指在不能立刻得到结果之前,该函数不会阻塞当前线程,而会立刻返回。
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值