Lowest Common Ancestor of a Binary Search Tree

本文介绍了一种在二叉搜索树中寻找两个指定节点的最低公共祖先的有效算法。通过利用二叉搜索树的特点,即每个节点的值都大于其左子树中的任意节点的值且小于其右子树中的任意节点的值,我们能够快速定位到这两个节点的最近共同祖先。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

       _______6______
       /              \
    ___2__          ___8__
   /      \        /      \
   0      _4       7       9
         /  \
         3   5

For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.

解法:二插搜索树特点,根节点值大于左子节点值小于右子节点值。设树中任两节点为p和q,分三种情况考虑:
①root.val > p.val && root.val > q.val,说明p和q的LCA在root的左子树中;
②root.val < p.val && root.val < q.val,说明p和q的LCA在root的右子树中;
③其他情况,说明p和q的LCA就是root;

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root.val > p.val && root.val > q.val) {
            return lowestCommonAncestor(root.left,p,q);
        }
        else if(root.val < p.val && root.val < q.val) {
            return lowestCommonAncestor(root.right,p,q);
        }
        else {
            return root;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值