垃圾收集器和内存分配策略 之 JVM垃圾收集算法《深入理解Java虚拟机:JVM高级特性与最佳实践》笔记五

本文深入解析了Java虚拟机(JVM)中的垃圾回收算法,包括标记-清除算法、复制算法、标记整理算法及分代收集算法。阐述了每种算法的工作原理、优缺点,并解释了如何在JVM中有效应用这些算法。

参考资料:

垃圾回收算法

标记-清除算法

标记-清除(Mark-Sweep)算法是现代垃圾回收算法的思想基础。
标记-清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段。一种可行的实现是,在标记阶段,首先通过根节点,标记所有从根节点开始的可达对象。因此,未被标记的对象就是未被引用的垃圾对象(好多资料说标记出要回收的对象,其实明白大概意思就可以了)。然后,在清除阶段,清除所有未被标记的对象。

缺点:
1、效率问题,标记和清除两个过程的效率都不高;
2、空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大的对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

如图:
在这里插入图片描述

复制算法

复制算法可以解决效率问题,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块,当这一块内存用完了,就将还存活着的对象复制到另一块上面,然后再把已经使用过的内存空间一次清理掉,这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可(还可使用TLAB进行高效分配内存)。

优点: 效率高,没有内存碎片
缺点:
1、浪费一半的内存空间
2、复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。

在这里插入图片描述

标记整理算法

标记整理算法类似与标记清除算法,不过它标记完对象后,不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉边界以外的内存。

优点:
1、相对标记清除算法,解决了内存碎片问题。
2、没有内存碎片后,对象创建内存分配也更快速了(可以使用TLAB进行分配)。
缺点:
效率问题,(同标记清除算法)标记和整理两个过程的效率都不高;

在这里插入图片描述

分代收集算法

当前商业虚拟机都是采用分代收集算法,它根据对象存活周期的不同将内存划分为几块,一般是把Java堆分为新生代和老年代,然后根据各个年代的特点采用最适当的收集算法,在新生代中,每次垃圾收集都发现有大批对象死去,只有少量存活,就选用复制算法,而老年代因为对象存活率高,没有额外空间对它进行分配担保,就必须使用“标记清理”或者“标记整理”算法来进行回收。

在这里插入图片描述

内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位地图构建)的性能展开多项对比实验研究,重点分析在稀疏稠密landmark环境下、预测更新步骤同时进行非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测更新机制同步否对滤波器稳定性精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)题的Matlab代码实现,旨在解决物流交通网络中枢纽节点的最优选址问题。通过构建数学模型,结合粒子群算法的全局寻优能力,优化枢纽位置及分配策略,提升网络传输效率并降低运营成本。文中详细阐述了算法的设计思路、实现步骤以及关键参数设置,并提供了完整的Matlab仿真代码,便于读者复现进一步改进。该方法适用于复杂的组合优化问题,尤其在大规模网络选址中展现出良好的收敛性实用性。; 适合人群:具备一定Matlab编程基础,从事物流优化、智能算法研究或交通运输系统设计的研究生、科研人员及工程技术人员;熟悉优化算法基本原理并对实际应用场景感兴趣的从业者。; 使用场景及目标:①应用于物流中心、航空枢纽、快递分拣中心等p-Hub选址问题;②帮助理解粒子群算法在离散优化问题中的编码迭代机制;③为复杂网络优化提供可扩展的算法框架,支持进一步融合约束条件或改进算法性能。; 阅读建议:建议读者结合文中提供的Matlab代码逐段调试运行,理解算法流程模型构建逻辑,重点关注粒子编码方式、适应度函数设计及约束处理策略。可尝试替换数据集或引入其他智能算法进行对比实验,以深化对优化效果算法差异的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值