import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by Administrator on 2018/7/24.
*/
object WordCount {
def main(args:Array[String]){
val conf=new SparkConf().setAppName("updateStateByKeyPro")
.setMaster("local[2]")
val ssc=new StreamingContext(conf,Seconds(10))
//开启checkpoint
ssc.checkpoint("hdfs://192.168.47.244:8020/input")
//连接nc(netcat)服务,接收数据源,产生Dtream 对象
val lines=ssc.socketTextStream("192.168.47.141",9999)
//分隔单词,并将分隔后的每个单词出现次数记录为1
val pairs=lines.flatMap(_.split(" "))
.map(word=>(word,1))
//调用updateStateByKey算子,统计单词在全局中出现的次数
val result=pairs.updateStateByKey((values:Seq[Int],state:Option[Int])=>{
//创建一个变量,用于记录单词出现次数
var newValue=state.getOrElse(0) //getOrElse相当于if....else.....
for(value <- values){
newValue +=value //将单词出现次数累计相加
}
Option(newValue)
})
//直接输出结果
result.print()
ssc.start() //开启实时计算
ssc.awaitTermination() //等待应用停止
}
}
Spark streaming之updateStateByKey
最新推荐文章于 2022-01-06 21:29:38 发布
本文介绍如何使用Apache Spark Streaming进行实时数据流处理,通过socket接收数据并实现单词频率的实时统计。代码示例展示了从配置Spark环境到启动实时计算的完整流程,包括checkpoint设置、数据读取、单词分割、频率统计及结果输出。
1864

被折叠的 条评论
为什么被折叠?



