Spark经典案之求最大最小值

本文介绍使用Apache Spark处理大数据集,实现求取文件中数值的最大值和最小值的业务场景。通过两种方法展示了如何利用Spark RDD进行数据过滤、转换和聚合操作,最终输出每个文件的最大值和最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据准备
eightteen_a.txt
102
10
39
109
200
11
3
90
28

eightteen_b.txt
5
2
30
838
10005

package ClassicCase

import org.apache.spark.{SparkConf, SparkContext}

/**
  * 业务场景:求最大最小值
  * Created by YJ on 2017/2/8.
  */


object case5 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local").setAppName("reduce")
    val sc = new SparkContext(conf)
    sc.setLogLevel("ERROR")
    val fifth = sc.textFile("hdfs://192.168.109.130:8020//user/flume/ClassicCase/case5/*", 2)
    val res = fifth.filter(_.trim().length>0).map(line => ("key",line.trim.toInt)).groupByKey().map(x => {
      var min = Integer.MAX_VALUE
      var max = Integer.MIN_VALUE
      for(num <- x._2){
        if(num>max){
          max = num
        }
        if(num<min){
          min = num
        }
      }
      (max,min)
    }).collect.foreach(x => {
      println("max\t"+x._1)
      println("min\t"+x._2)
    })
  }

}

方法2

package com.neusoft

import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by Administrator on 2019/3/4.
  */
object FileMaxMin {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("FileOrder").setMaster("local")

    val sc = new SparkContext(sparkConf)

    val rdd = sc.textFile("demo4/*")
    //key,list(102,10,39,......)
    rdd.filter(_.length > 0).map(x => ("key",x.toInt)).groupByKey().map(x => {
      println("max:" + x._2.max)
      println("max:" + x._2.min)
    }).collect()

  }
}

结果输出
max 10005
min 2



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值