最大似然估计 和 最小二乘法

本文介绍了最大似然估计和最小二乘法的概念和区别。最大似然估计寻找使样本值发生概率最大的参数,而最小二乘法则通过最小化实际值与估计值的平方差来确定估计值。两者都是优化问题,最大似然估计需假设样本独立同分布,而最小二乘法无此假设,且最小二乘法是凸优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文内容主要参考知乎问题下的回答:https://www.zhihu.com/question/20447622

最大似然估计与最小二乘法的解释:

  • 最大似然估计:现在已经拿到了很多个样本(你的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大。因为你手头上的样本已经实现了,其发生概率最大才符合逻辑。这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加总。此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值。
  • 最小二乘:找到一个(组)估计值,使得实际值与估计值的距离最小。本来用两者差的绝对值汇总并使之最小是最理想的,但绝对值在数学上求最小值比较麻烦,因而替代做法是,找一个(组)估计值,使得实际值与估计值之差的平方加总之后的值最小,称为最小二乘。“二乘”的英文为least square,其实英文的字面意思是“平方最小”。这时,将这个差的平方的和式对参数求导数,并取一阶导数为零,就是OLSE。(简言之最小二乘法就是基于均方误差最小化来进行模型求解的方法,求解w、b使得均方误差最小化的过程称为线性回归模型的最小二乘“参数估计”)

区别:

  • 最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function = (y_hat -y )^2的一个特例,类似的想各位说的还可以用各种距离度量来作为loss function而不仅仅是欧氏距离。所以loss function可以说是一种更一般化的说法。
  • 最大似然估计是从概率角度来想这个问题,直观理解,似然函数在给定参数的条件下就是观测到一组数据realization的概率(或者概率密度)。最大似然函数的思想就是什么样的参数才能使我们观测到
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值