主成分分析(Principal components analysis)-最大方差解释

本文深入浅出地介绍了主成分分析(PCA)的基本概念、计算流程及背后的理论基础,包括最大方差理论,并通过实例帮助理解如何通过PCA实现特征降维。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,我阅读了PCA、SVD和LDA。这几个模型相近,却都有自己的特点。本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了。PCA以前也叫做Principal factor analysis。

1. 问题

     真实的训练数据总是存在各种各样的问题:

1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。

2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩。我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关。那是不是可以合并第一项和第二项呢?

3、 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合。比如北京的房价:假设房子的特征是(大小、位置、朝向、是否学区房、建造年代、是否二手、层数、所在层数),搞了这么多特征,结果只有不到十个房子的样例。要拟合房子特征->房价的这么多特征,就会造成过度拟合。

4、 这个与第二个有点类似,假设在IR中我们建立的文档-词项矩阵中,有两个词项为“learn”和“study”,在传统的向量空间模型中,认为两者独立。然而从语义的角度来讲,两者是相似的,而且两者出现频率也类似,是不是可以合成为一个特征呢?

5、 在信号传输过程中,由于信道不是理想的,信道另一端收到的信号会有噪音扰动,那么怎么滤去这些噪音呢?

     回顾我们之前介绍的《模型选择和规则化》,里面谈到的特征选择的问题。但在那篇中要剔除的特征主要是和类标签无关的特征。比如“学生的名字”就和他的“成绩”无关,使用的是互信息的方法。

     而这里的特征很多是和类标签有关的,但里面存在噪声或者冗余。在这种情况下,需要一种特征降维的方法来减少特征数,减少噪音和冗余,减少过度拟合的可能性。

     下面探讨一种称作主成分分析(PCA)的方法来解决部分上述问题。PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主元,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。

2. PCA计算过程

     首先介绍PCA的计算过程:

     假设我们得到的2维数据如下:

     clip_image001[4]

     行代表了样例,列代表特征,这里有10个样例,每个样例两个特征。可以这样认为,有10篇文档,x是10篇文档中“learn”出现的TF-IDF,y是10篇文档中“study”出现的TF-IDF。也可以认为有10辆汽车,x是千米/小时的速度,y是英里/小时的速度,等等。

     第一步分别求x和y的平均值,然后对于所有的样例,都减去对应的均值。这里x的均值是1.81,y的均值是1.91,那么一个样例减去均值后即为(0.69,0.49),得到

     clip_image002[4]

     第二步,求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

     clip_image003[4]

     这里只有x和y,求解得

     clip_image004[4]

     对角线上分别是x和y的方差,非对角线上是协方差。协方差大于0表示x和y若有一个增,另一个也增;小于0表示一个增,一个减;协方差为0时,两者独立。协方差绝对值越大,两者对彼此的影响越大,反之越小。

     第三步,求协方差的特征值和特征向量,得到

     clip_image005[4]

     上面是两个特征值,下面是对应的特征向量,特征值0.0490833989对应特征向量为clip_image007[4],这里的特征向量都归一化为单位向量。

    第四步,将特征值按照从大到小的顺序排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵。

     这里特征值只有两个,我们选择其中最大的那个,这里是1.28402771,对应的特征向量是clip_image009[6]

     第五步,将样本点投影到选取的特征向量上。假设样例数为m,特征数为n,减去均值后的样本矩阵为DataAdjust(m*n),协方差矩阵是n*n,选取的k个特征向量组成的矩阵为EigenVectors(n*k)。那么投影后的数据FinalData为

     clip_image011[4]

     这里是

     FinalData(10*1) = DataAdjust(10*2矩阵)×特征向量clip_image009[7]

     得到结果是

     clip_image012[4]

     这样,就将原始样例的n维特征变成了k维,这k维就是原始特征在k维上的投影。

     上面的数据可以认为是learn和study特征融合为一个新的特征叫做LS特征,该特征基本上代表了这两个特征。

     上述过程有个图描述:

     clip_image013[4]

     正号表示预处理后的样本点,斜着的两条线就分别是正交的特征向量(由于协方差矩阵是对称的,因此其特征向量正交),最后一步的矩阵乘法就是将原始样本点分别往特征向量对应的轴上做投影。

     如果取的k=2,那么结果是

     clip_image014[4]

     这就是经过PCA处理后的样本数据,水平轴(上面举例为LS特征)基本上可以代表全部样本点。整个过程看起来就像将坐标系做了旋转,当然二维可以图形化表示,高维就不行了。上面的如果k=1,那么只会留下这里的水平轴,轴上是所有点在该轴的投影。

     这样PCA的过程基本结束。在第一步减均值之后,其实应该还有一步对特征做方差归一化。比如一个特征是汽车速度(0到100),一个是汽车的座位数(2到6),显然第二个的方差比第一个小。因此,如果样本特征中存在这种情况,那么在第一步之后,求每个特征的标准差clip_image016[6],然后对每个样例在该特征下的数据除以clip_image016[7]

     归纳一下,使用我们之前熟悉的表示方法,在求协方差之前的步骤是:

     clip_image017[4]

     其中clip_image019[6]是样例,共m个,每个样例n个特征,也就是说clip_image019[7]是n维向量。clip_image021[4]是第i个样例的第j个特征。clip_image023[4]是样例均值。clip_image025[4]是第j个特征的标准差。

     整个PCA过程貌似及其简单,就是求协方差的特征值和特征向量,然后做数据转换。但是有没有觉得很神奇,为什么求协方差的特征向量就是最理想的k维向量?其背后隐藏的意义是什么?整个PCA的意义是什么?

3. PCA理论基础

     要解释为什么协方差矩阵的特征向量就是k维理想特征,我看到的有三个理论:分别是最大方差理论、最小错误理论和坐标轴相关度理论。这里简单探讨前两种,最后一种在讨论PCA意义时简单概述。

3.1 最大方差理论

     在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。如前面的图,样本在横轴上的投影方差较大,在纵轴上的投影方差较小,那么认为纵轴上的投影是由噪声引起的。

因此我们认为,最好的k维特征是将n维样本点转换为k维后,每一维上的样本方差都很大。

     比如下图有5个样本点:(已经做过预处理,均值为0,特征方差归一)

     clip_image026[4]

     下面将样本投影到某一维上,这里用一条过原点的直线表示(前处理的过程实质是将原点移到样本点的中心点)。

     clip_image028[4]

     假设我们选择两条不同的直线做投影,那么左右两条中哪个好呢?根据我们之前的方差最大化理论,左边的好,因为投影后的样本点之间方差最大。

     这里先解释一下投影的概念:

     QQ截图未命名

     红色点表示样例clip_image037[14],蓝色点表示clip_image037[15]在u上的投影,u是直线的斜率也是直线的方向向量,而且是单位向量。蓝色点是clip_image037[16]在u上的投影点,离原点的距离是clip_image039[4](即clip_image030[4]或者clip_image041[4])由于这些样本点(样例)的每一维特征均值都为0,因此投影到u上的样本点(只有一个到原点的距离值)的均值仍然是0。

     回到上面左右图中的左图,我们要求的是最佳的u,使得投影后的样本点方差最大。

     由于投影后均值为0,因此方差为:

     clip_image042[4]

     中间那部分很熟悉啊,不就是样本特征的协方差矩阵么(clip_image037[17]的均值为0,一般协方差矩阵都除以m-1,这里用m)。

     用clip_image044[10]来表示clip_image046[4]clip_image048[6]表示clip_image050[4],那么上式写作

     clip_image052[4] 

     由于u是单位向量,即clip_image054[4],上式两边都左乘u得,clip_image056[4]

     即clip_image058[4]

     We got it!clip_image044[11]就是clip_image048[7]的特征值,u是特征向量。最佳的投影直线是特征值clip_image044[12]最大时对应的特征向量,其次是clip_image044[13]第二大对应的特征向量,依次类推。

     因此,我们只需要对协方差矩阵进行特征值分解,得到的前k大特征值对应的特征向量就是最佳的k维新特征,而且这k维新特征是正交的。得到前k个u以后,样例clip_image037[18]通过以下变换可以得到新的样本。

     clip_image059[4]

     其中的第j维就是clip_image037[19]clip_image061[4]上的投影。

     通过选取最大的k个u,使得方差较小的特征(如噪声)被丢弃。

     这是其中一种对PCA的解释,第二种是错误最小化,放在下一篇介绍。


转自:http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html

<think>好的,我现在需要回答用户关于主成分分析(PCA)的概念、实现方法和应用场景的问题。首先,我得回顾一下自己了解的PCA知识,同时结合用户提供的引用内容,确保回答准确且符合要求。 用户提供的引用中有几个关键点需要注意。引用[1]提到PCA是数据降维的方法之一,引用[3]和[4]详细解释了PCA的原理,包括其作为非监督学习的方法,通过特征值分解进行数据压缩和去噪,以及主成分是原始数据的线性组合。引用[5]给出了一个使用scikit-learn实现PCA的代码示例。此外,引用[3]还提到了PCA的变种,如KPCA、增量PCA和稀疏PCA,这些可能在回答优化或应用部分有用。 首先,我需要明确用户的问题分为三个部分:概念、实现方法和应用场景。结构上应该分点回答,每个部分清晰。同时,根据系统级指令,行内数学公式需要用$...$,独立公式用$$...$$,并且正确使用LaTeX语法。还要生成相关问题,并在引用处添加标识。 概念部分,需要解释PCA的基本原理。根据引用[4],PCA是一种线性变换技术,用于降维并保留大部分信息。主成分是正交变换后的新坐标轴,是原始变量的线性组合。这里可能需要提到方差最大化,即PCA找到数据方差最大的方向作为第一主成分,后续成分与前面的正交且方差次大。需要数学表达式,比如协方差矩阵、特征值分解等。例如,协方差矩阵的计算公式,特征值和特征向量的作用。 实现方法部分,引用[5]中的代码示例是一个很好的起点。需要分步骤说明PCA的实现过程,包括数据标准化、计算协方差矩阵、特征分解、选择主成分、投影数据等步骤。同时,可以提到使用scikit-learn的PCA类简化流程。这里需要确保代码块正确,并解释关键参数如n_components。 应用场景部分,根据引用[1]、[3]、[4],PCA常用于数据压缩、可视化、去噪、特征提取等。比如在图像处理、金融数据分析、生物信息学等领域。需要具体例子,如人脸识别中的降维,或基因组数据中的特征提取。同时,引用[3]提到的变种应用场景,如KPCA处理非线性数据,可以补充说明。 在写作过程中,要检查数学公式的正确性。例如,协方差矩阵的公式是否正确,特征值分解的表示是否准确。例如,协方差矩阵的计算应该是$\frac{1}{n-1}X^TX$,其中$X$是标准化后的数据矩阵。特征分解部分,协方差矩阵分解为$W\Lambda W^T$,其中$W$是特征向量矩阵,$\Lambda$是特征值对角矩阵。 此外,需要确保每个引用标识正确对应到用户提供的引用内容。例如,提到PCA作为非监督学习的方法时引用[3],提到主成分是线性组合时引用[4],代码示例引用[5]。 生成相关问题部分,需要考虑用户可能进一步想知道的内容,比如PCA的优缺点、与其他降维方法的比较、参数选择的影响、数学推导细节等。例如,如何选择主成分的数量,PCA与LDA的区别,PCA的假设是否限制其应用等。 最后,要确保回答结构清晰,分点明确,语言通顺,符合中文习惯。同时,行内公式正确使用$符号,独立公式单独成段,并正确使用LaTeX语法,例如协方差矩阵、投影公式等。</think>### 主成分分析(PCA)详解 #### 一、概念与数学原理 主成分分析(PCA)是一种**非监督学习的线性降维方法**,核心是通过正交变换将高维数据映射到低维空间,同时保留最大方差信息[^3]。其数学原理包含以下关键步骤: 1. **数据标准化**:将原始数据去中心化(均值为0),公式为: $$X_{\text{norm}} = X - \mu \quad (\mu \text{为均值向量})$$ 2. **协方差矩阵计算**:标准化后的数据计算协方差矩阵: $$C = \frac{1}{n-1}X_{\text{norm}}^T X_{\text{norm}}$$ 3. **特征值分解**:对协方差矩阵$C$进行特征分解,得到特征值$\lambda_i$和对应特征向量$W$: $$C = W \Lambda W^T \quad (\Lambda \text{为特征值对角矩阵})$$ 4. **主成分选择**:按特征值从大到小排序,选取前$k$个特征向量构成投影矩阵$W_k$,将原始数据投影到低维空间: $$Z = X_{\text{norm}} W_k$$ 每个主成分对应一个特征向量,其重要性由特征值$\lambda_i$衡量,方差贡献率为$\lambda_i / \sum \lambda_i$[^4]。 --- #### 二、实现方法(Python示例) 使用`scikit-learn`实现PCA的完整流程: ```python from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # 数据标准化(PCA前必须) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 初始化PCA并降维 pca = PCA(n_components=2) # 指定保留2个主成分 X_pca = pca.fit_transform(X_scaled) # 查看方差贡献率 print("方差贡献率:", pca.explained_variance_ratio_) ``` **关键参数说明**: - `n_components`:可设为整数(目标维度)或小数(保留方差的百分比,如0.95) - `svd_solver`:优化算法选择(如`auto`, `full`, `randomized`) --- #### 三、应用场景 1. **数据可视化**:将高维数据降至2D/3D,便于绘制散点图观察分布。 2. **特征压缩**:减少图像、语音等数据的存储和计算成本[^4]。 3. **去噪与预处理**:通过保留主成分过滤噪声,提升模型鲁棒性。 4. **多变量分析**:在金融领域分析股票收益率的关联性,或在生物信息学中处理基因表达数据[^1][^4]。 **案例**: 在人脸识别中,PCA可将数万像素的图片降至几十个主成分(特征脸),显著提升分类效率。 --- #### 四、优化与限制 - **优化方法**: - **核PCA(KPCA)**:通过核函数处理非线性数据。 - **增量PCA**:适用于内存不足的大数据集[^3]。 - **局限性**: - 主成分的可解释性较弱(线性组合可能缺乏物理意义)。 - 对异常值敏感,需提前标准化处理。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值