import numpy as np def Hard_sigmoid(input): return np.maximum(np.minimum(1,(input+1)/2),0) def Sigmoid(input): return 1.0/(1.0+np.exp(-input)) def Tanh(input): return np.tanh(input) def Relu(input): return np.maximum(0.0,input) def Liner(input): return input def Softmax(input): assert np.ndim(input) == 2 x = input - np.max(input,axis=1,keepdims=True) exp_x = np.exp(x) return exp_x/np.sum(exp_x,axis=1,keepdims=True) def Leak_relu(input,alpha = 0.3): return np.maximum(alpha*input,input) def Softplus(input): return np.log(1+np.exp(input)) def Dense(input_array,w,b): return np.dot(input_array,w)+b ###input_array.shape=(num,) w.shape = (num,outnode_num) b.shape=(outnode_num,)
Activation_function
最新推荐文章于 2025-01-14 09:57:56 发布