positive definite matrix

本文深入探讨了正定矩阵的概念及其多种等价定义方法,包括基于特征值、主子式及二次型的判断准则,并介绍了正定矩阵在数学中的重要性质。

positive definite matrix

A positive definite matrix is a symmetric matrix with all positive eigenvalues. Note that as it’s a symmetric matrix all the eigenvalues are real, so it makes sense to talk about them being positive or negative.

Positive Definite Matrices - What Are They, and What Do They Want?

A matrix is positive definite if it’s symmetric and all its eigenvalues are positive.

The thing is, there are a lot of other equivalent ways to define a positive definite matrix. One equivalent definition can be derived using the fact that for a symmetric matrix the signs of the pivots are the signs of the eigenvalues. So, for example, if a 4 × 4 matrix has three positive pivots and one negative pivot, it will have three positive eigenvalues and one negative eigenvalue. We can apply this fact to positive definite matrices to derive the next equivalent definition.

A matrix is positive definite if it’s symmetric and all its pivots are positive.

Pivots are, in general, way easier to calculate than eigenvalues. Just perform elimination and examine the diagonal terms. No problem. In practice this is usually the way you’d like to do it. For example, in that matrix from the introduction:

[1221]

If we perform elimination (subtract 2× row 1 from row 2) we get

[1023]

The pivots are 1 and −3. In particular, one of the pivots is −3, and so the matrix is not positive definite. Were we to calculate the eigenvalues we’d see they are 3 and −1.

Another way we can test for if a matrix is positive definite is we can look at its n upper left determinants.

Ak=det(Ak)det(Ak1)

where Ak is the upper left k x k submatrix. All the pivots will be positive if and only if det(Ak) > 0 for all 1<=k<= n. So, if all upper left k x k determinants of a symmetric matrix are positive, the matrix is positive definite.

Example - Is the following matrix positive definite?

210121012

|2|=2

2112=3

210121012=822=4

2,3,4>0 => 正定

If x is an eigenvector of A then x!=0 and Ax = λ x. In this case xTAx = λ xTx. If λ > 0, then as xTx> 0 we must have xTAx> 0.

The thing about positive definite matrices is xTAx is always positive, for any non-zero vector x, not just for an eigenvector. In fact, this is an equivalent definition of a matrix being positive definite.

A matrix is positive definite if xTAx > 0,for all vectors x != 0.

if A and B are positive definite then so is A + B.

Our final definition of positive definite is that a matrix A is positive definite if and only if it can be written as A = RTR, where R is a matrix, possibly rectangular, with independent columns. Note that, using our energy-based definition, it’s easy to prove that if A = RTR then A is positive definite.

xTAx=xTRTRx=(Rx)T(Rx)=||Rx||2

If the columns of R are linearly independent then Rx!=0 if x!=0,and so xTAx>0 .

A matrix A is positive definite if and only if it can be written as A=RTR for some possibly rectangular matrix R with independent columns.

Note that we say a matrix is positive semidefinite if all of its eigenvalues are non-negative.

参考文献
  1. https://www.math.utah.edu/~zwick/Classes/Fall2012_2270/Lectures/Lecture33_with_Examples.pdf
### 解决矩阵非正定问题的方法 在数值计算或机器学习算法中遇到矩阵非正定时,可以采取多种策略来解决问题。以下是几种常见的解决方案: #### 方法一:调整矩阵使其接近正定 可以通过向矩阵添加一个小的扰动项来使它更接近正定形式。具体来说,在矩阵 \( A \) 的对角线上加上一个小的正值常数 \( \epsilon I \),其中 \( I \) 是单位矩阵,\( \epsilon \) 是一个非常小的正实数。这种方法通常被称为 **Tikhonov 正则化** 或 **岭回归**。 \[ A_{\text{new}} = A + \epsilon I \] 这一步骤能够有效改善条件数并减少病态行为[^1]。 #### 方法二:使用共轭梯度法处理正规方程 如果原始矩阵不是正定的,则可以考虑将其转换为正规方程的形式 \( A^T A x = A^T b \)。由于 \( A^T A \) 总是一个对称半正定矩阵,因此即使原矩阵 \( A \) 不满足正定性质,也可以利用此特性应用共轭梯度法求解线性系统。 需要注意的是,尽管这种做法解决了非正定问题,但它可能放大噪声的影响,特别是在数据存在较大误差的情况下。 #### 方法三:引入正则化技术 为了防止过拟合以及应对非正定情况下的优化困难,可以在目标函数中加入 L2 范数惩罚项作为正则化手段。这样做的效果相当于隐式地改变了 Hessian 矩阵结构,从而帮助其变得更为稳定和易于收敛[^5]。 例如,在最小二乘问题中增加如下约束: \[ J(\theta) = \|X\theta - y\|^2_2 + \lambda \|\theta\|_2^2 \] 这里的参数 \( \lambda > 0 \) 控制着正则化的强度大小。 #### 方法四:采用稳健的数值方法替代传统方式 对于某些特定应用场景而言,直接修改输入矩阵并非最佳选择;此时可以选择更加鲁棒性强的技术代替标准操作流程。比如运用奇异值分解(SVD)或者特征值分解(Eigenvalue Decomposition)重构新的基底空间表示,进而规避掉因不良定义而导致的一系列麻烦事项[^3]。 另外还可以尝试其他高级迭代方案如预调节子(preconditioner)-辅助型 CG 法等进一步提升稳定性表现水平。 ```python import numpy as np # Example implementation using regularization technique def solve_with_regularization(A, b, epsilon=1e-8): n = A.shape[1] identity_matrix = np.eye(n) adjusted_A = A.T @ A + epsilon * identity_matrix solution_x = np.linalg.solve(adjusted_A, A.T @ b) return solution_x ``` 上述代码片段展示了如何通过简单地改变系数矩阵实现基本版本的修正过程。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值