const在函数声明中的应用-zt

本文详细解析了C++中const关键字的用法及其注意事项,包括修饰参数、返回值及成员函数的不同场景。并通过实例展示了如何利用const提升程序的健壮性和效率。

1.在一个函数声明中,const 可以修饰函数的返回值,或某个参数;对于成员函数,还可以修饰是整个函数。有如下几种情况,以下会逐渐的说明用法:

        A& operator=(const A& a); 
                void fun0(const A* a ); 
                void fun1( ) const; // fun1( ) 为类成员函数 
                const A fun2( );

1) 修饰参数的const,如 void fun0(const A* a ); void fun1(const A& a);

调用函数的时候,用相应的变量初始化const常量,则在函数体中,按照const所修饰的部分进行常量化,如形参为const A* a,则不能对传递进来的指针的内容进行改变,保护了原指针所指向的内容;如形参为const A& a,则不能对传递进来的引用对象进行改变,保护了原对象的属性。

[注意]:

参数const通常用于参数为指针或引用的情况,且只能修饰输入参数;若输入参数采用“值传递”方式,由于函数将自动产生临时变量用于复制该参数,该参数本就不需要保护,所以不用const修饰。

[总结]:

对于非内部数据类型的输入参数,因该将“值传递”的方式改为“const引用传递”,目的是为了提高效率。例如,将void Func(A a)改为void Func(const A &a)

对于内部数据类型的输入参数,不要将“值传递”的方式改为“const引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x)不应该改为void Func(const int &x)

2) 修饰返回值的const,如const A fun2( ); const A* fun3( );

这样声明了返回值后,const按照"修饰原则"进行修饰,起到相应的保护作用。const Rational operator*(const Rational& lhs, const Rational& rhs)


        return Rational(lhs.numerator() * rhs.numerator(), 
        lhs.denominator() * rhs.denominator()); 
        }

返回值用const修饰可以防止允许这样的操作发生:Rational a,b;

Radional c; 
        (a*b) = c;

一般用const修饰返回值为对象本身(非引用和指针)的情况多用于二目操作符重载函数并产生新对象的时候。

        [总结]:

        (1)一般情况下,函数的返回值为某个对象时,如果将其声明为const时,多用于操作符的重载。通常,不建议用const修饰函数的返回值类型为某个对象或对某个对象引用的情况。原因如下:如果返回值为某个对象为const(const A test = A 实例)或某个对象的引用为const(const A& test = A实例) ,则返回值具有const属性,则返回实例只能访问类A中的公有(保护)数据成员和const成员函数,并且不允许对其进行赋值操作,这在一般情况下很少用到。

        (2)如果给采用“指针传递”方式的函数返回值加const修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const 修饰的同类型指针。如:
                  const char * GetString(void);
                  如下语句将出现编译错误:
                  char *str=GetString();
                  正确的用法是:
                  const char *str=GetString();

        (3)函数返回值采用“引用传递”的场合不多,这种方式一般只出现在类的赙值函数中,目的是为了实现链式表达。如:

          class A
                  {…
                  A &operate = (const A &other); //赋值函数
                  }
                  A a,b,c; //a,b,c为A的对象
                  …
                  a=b=c; //正常
                  (a=b)=c; //不正常,但是合法

        若赋值函数的返回值加const修饰,那么该返回值的内容不允许修改,上例中a=b=c依然正确。(a=b)=c就不正确了。

        [思考3]: 这样定义赋值操作符重载函数可以吗?

        const A& operator=(const A& a);

2. 类成员函数中const的使用

一般放在函数体后,形如:void fun() const;

任何不会修改数据成员的函数都因该声明为const类型。如果在编写const成员函数时,不慎修改了数据成员,或者调用了其他非const成员函数,编译器将报错,这大大提高了程序的健壮性。如:

class Stack
        {
        public:
                void Push(int elem);
                int Pop(void);
                int GetCount(void) const; //const 成员函数
        private: 
                int m_num;
                int m_data[100];
        };
        int Stack::GetCount(void) const
        {
                ++m_num; //编译错误,企图修改数据成员m_num
                Pop(); //编译错误,企图调用非const函数
                Return m_num;
        }

3. 使用const的一些建议

    (1)要大胆的使用const,这将给你带来无尽的益处,但前提是你必须搞清楚原委; 
            (2)要避免最一般的赋值操作错误,如将const变量赋值,具体可见思考题; 
            (3)在参数中使用const应该使用引用或指针,而不是一般的对象实例,原因同上; 
            (4) const在成员函数中的三种用法(参数、返回值、函数)要很好的使用; 
            (5) 不要轻易的将函数的返回值类型定为const; 
            (6)除了重载操作符外一般不要将返回值类型定为对某个对象的const引用;


http://www.cnblogs.com/goodloop/archive/2010/04/13/1711368.html


#include "modelDeemo.h" #include "version.txt" // excerpt-export-start int __stdcall DllMain(void *,unsigned, void *) { return 1; } extern "C" EXPORT_TAG const char *getName() { #ifdef MODELDEBUG return "cmodelDeemod"; #else return "cmodelDeemo"; #endif } extern "C" EXPORT_TAG unsigned getMajorVersion() { return MAJOR_VERSION; } extern "C" EXPORT_TAG unsigned getMinorVersion() { return UPDATE_VERSION; } extern "C" EXPORT_TAG void *createInstance() { models::ModelDeemo *m = new models::ModelDeemo(); return (void *)m; } // excerpt-export-end namespace models { // excerpt-con-start ModelDeemo::ModelDeemo() : bulk_(0.0), Mshear_(0.0), Mviscosity1_(0.0), Kshear1_(0.0), Kviscosity1_(0.0), Kshear2_(0.0), Kviscosity2_(0.0), Mviscosity2_(0.0), A_(0.0) { //kelvinStrain1 Mekd_[0] = 0.0; Mekd_[1] = 0.0; Mekd_[2] = 0.0; Mekd_[3] = 0.0; Mekd_[4] = 0.0; Mekd_[5] = 0.0; //kelvinStrain2 Mekd_[6] = 0.0; Mekd_[7] = 0.0; Mekd_[8] = 0.0; Mekd_[9] = 0.0; Mekd_[10] = 0.0; Mekd_[11] = 0.0; } // excerpt-con-end String ModelDeemo::getName() const { #ifdef MODELDEBUG return L"Deemo-debug"; #else return L"Deemo"; #endif } String ModelDeemo::getFullName() const { #ifdef MODELDEBUG return L"Deemo Debug"; #else return L"Deemo"; #endif } UInt ModelDeemo::getMinorVersion() const { return UPDATE_VERSION; } String ModelDeemo::getProperties() const { //获取参数 return L"bulk_, Kshear1_, Mshear_, Kviscosity1_, Mviscosity1_,"//burgers的参数 L"Kshear2_, Kviscosity2_, Mviscosity2_, A_," //塑性部分的参数 L"strain-kelvin-xx,strain-kelvin-yy,strain-kelvin-zz,strain-kelvin-xy,strain-kelvin-xz,strain-kelvin-yz,"//黏弹性体应变 L"cohesion,friction,dilation,tension,strain-shear-plastic,strain-tensile-plastic -strain-tension-plastic";//MC准则 } String ModelDeemo::getStates() const { return L"shear-n,tension-n,shear-p,tension-p"; } Variant ModelDeemo::getProperty(UInt index) const { switch (index) { case 1: return bulk_; case 2: return Kshear1_; case 3: return Mshear_; case 4: return Kviscosity1_; case 5: return Mviscosity1_; case 6: return Kshear2_; case 7: return Kviscosity2_; case 8: return Mviscosity2_; case 9: return A_;//模型参数 case 10: return Mekd_[0]; case 11: return Mekd_[1]; case 12: return Mekd_[2]; case 13: return Mekd_[3]; case 14: return Mekd_[4]; case 15: return Mekd_[5]; case 16: return Mekd_[6]; case 17: return Mekd_[7]; case 18: return Mekd_[8]; case 19: return Mekd_[9]; case 20: return Mekd_[10]; case 21: return Mekd_[11]; case 22: return cohesion_; case 23: return friction_; case 24: return dilation_; case 25: return tension_; case 26: return sHP_;//剪切应变 case 27: return tHP_;//张拉应变 } return(0.0); } void ModelDeemo::setProperty(UInt index,const Variant &p,UInt restoreVersion) { ConstitutiveModel::setProperty(index, p, restoreVersion); switch (index) { case 1: bulk_ = p.toDouble(); break; case 2: Kshear1_ = p.toDouble(); break; case 3: Mshear_ = p.toDouble(); break; case 4: Kviscosity1_ = p.toDouble(); break; case 5: Mviscosity1_ = p.toDouble(); break; case 6: Kshear2_ = p.toDouble(); break; case 7: Kviscosity2_ = p.toDouble(); break; case 8: Mviscosity2_ = p.toDouble(); break; case 9: A_ = p.toDouble(); break; case 10: Mekd_[0] = p.toDouble(); break; case 11: Mekd_[1] = p.toDouble(); break; case 12: Mekd_[2] = p.toDouble(); break; case 13: Mekd_[3] = p.toDouble(); break; case 14: Mekd_[4] = p.toDouble(); break; case 15: Mekd_[5] = p.toDouble(); break; case 16: Mekd_[6] = p.toDouble(); break; case 17: Mekd_[7] = p.toDouble(); break; case 18: Mekd_[8] = p.toDouble(); break; case 19: Mekd_[9] = p.toDouble(); break; case 20: Mekd_[10] = p.toDouble(); break; case 21: Mekd_[11] = p.toDouble(); break; case 22: cohesion_ = p.toDouble(); break; case 23: friction_ = p.toDouble(); break; case 24: dilation_ = p.toDouble(); break; case 25: tension_ = p.toDouble(); break; case 26: sHP_ = p.toDouble(); break; case 27: tHP_ = p.toDouble(); break; } } /*bool ModelDeemo::isPropertyAdvanced(UInt i) const { if (i <= 4) return ModelDeemo::isPropertyAdvanced(i); else if (i==9) return true; return false; }*/ //下面这段cvisc中是vm,这里是mm void ModelDeemo::copy(const ConstitutiveModel *m) { const ModelDeemo *mm = dynamic_cast<const ModelDeemo *>(m); if (!mm) throw std::runtime_error("Internal error: constitutive model dynamic cast failed."); // ConstitutiveModel::copy(m); // bulk_ = mm->bulk_; Kshear1_ = mm->Kshear1_; Mshear_ = mm->Mshear_; Kviscosity1_ = mm->Kviscosity1_; Mviscosity1_ = mm->Mviscosity1_; Kshear2_ = mm->Kshear2_; Kviscosity2_ = mm->Kviscosity2_; Mviscosity2_ = mm->Mviscosity2_; A_ = mm->A_; Mekd_[0] = mm->Mekd_[0]; Mekd_[1] = mm->Mekd_[1]; Mekd_[2] = mm->Mekd_[2]; Mekd_[3] = mm->Mekd_[3]; Mekd_[4] = mm->Mekd_[4]; Mekd_[5] = mm->Mekd_[5]; Mekd_[6] = mm->Mekd_[6]; Mekd_[7] = mm->Mekd_[7]; Mekd_[8] = mm->Mekd_[8]; Mekd_[9] = mm->Mekd_[9]; Mekd_[10] = mm->Mekd_[10]; Mekd_[11] = mm->Mekd_[11]; cohesion_ = mm->cohesion_; friction_ = mm->friction_; dilation_ = mm->dilation_; tension_ = mm->tension_; sHP_ = mm->sHP_; tHP_ = mm->tHP_; } // excerpt-run-start参数初始化,计算模型中间参数值; void ModelDeemo::initialize(UByte dim, State *s) { ConstitutiveModel::initialize(dim, s); //参数非零化 if (Mshear_ <= 0.0) Mshear_ = 1e-20; if (Kshear1_ <= 0.0) Kshear1_ = 0.0; if (Kshear2_ <= 0.0) Kshear2_ = 0.0; if (Kviscosity1_ <= 0.0) { Kviscosity1_ = 0.0; Kshear1_ = 0.0; } if (Kviscosity2_ <= 0.0) { Kviscosity2_ = 0.0; Kshear2_ = 0.0; } if (Mviscosity1_ <= 0.0) Mviscosity1_ = 0.0; if (Mviscosity2_ <= 0.0) Mviscosity2_ = 0.0; if (A_ <= 0.0) A_ = 0.0; // 3. 初始化Mohr-Coulomb准则相关参数(参考CVisc模型) Double rsin = std::sin(friction_ * degrad); // degrad是角度转弧度的系数 nph_ = (1.0 + rsin) / (1.0 - rsin); // 塑性硬化参数 csn_ = 2.0 * cohesion_ * sqrt(nph_); // 修正后的内聚力 // 限制抗拉强度不超过内聚力和摩擦角决定的顶点值 if (friction_ > 0.0) { Double apex = cohesion_ / std::tan(friction_ * degrad); tension_ = std::min(tension_, apex); } // 剪胀角相关参数 rsin = std::sin(dilation_ * degrad); nps_ = (1.0 + rsin) / (1.0 - rsin); // 剪胀参数 // 计算应力比参数 rc_ = std::sqrt(1.0 + nph_ * nph_); } static const UInt Dqs = 12; static const UInt Dqt = 13; void ModelDeemo::run(UByte dim, State *s) { ConstitutiveModel::run(dim, s); // excerpt-state-start if (s->state_ & shear_now) s->state_ |= shear_past; s->state_ &= ~shear_now; if (s->state_ & tension_now) s->state_ |= tension_past; s->state_ &= ~tension_now; // excerpt-state-end UInt iPlas = 0;//未屈服(黏弹性) // dEkd values now stored in s->working_[] array (necessary for thread safety) Double tempk1 = 0, tempk2 = 0, tempm1 = 0, tempm2 = 0.0; Double dCrtdel = (s->isCreep() ? s->getTimeStep() : 0.0); //sum += dCrtdel / 10.0;///加的东西 Double dSubZoneVolume = s->getSubZoneVolume(); if (!s->sub_zone_) { s->working_[0] = 0.0; s->working_[1] = 0.0; s->working_[2] = 0.0; s->working_[3] = 0.0; s->working_[4] = 0.0; s->working_[5] = 0.0; s->working_[6] = 0.0; s->working_[7] = 0.0; s->working_[8] = 0.0; s->working_[9] = 0.0; s->working_[10] = 0.0; s->working_[11] = 0.0; s->working_[Dqs] = 0.0; s->working_[Dqt] = 0.0; } if (Kviscosity1_ <= 0.0) tempk1 = 0.0; else tempk1 = 1.0 / Kviscosity1_; // if (Mviscosity1_ <= 0.0) tempm1 = 0.0; else tempm1 = 1.0 / Mviscosity1_; if (Kviscosity2_ <= 0.0) tempk2 = 0.0; else tempk2 = 1.0 / Kviscosity2_; if (Mviscosity2_ <= 0.0) tempm2 = 0.0; else tempm2 = 1.0 / Mviscosity2_; Double temp1 = 0.5 * Kshear1_ * dCrtdel * tempk1; Double a1_con = 1.0 + temp1;//A1 Double b1_con = 1.0 - temp1;//B1 Double ba1 = b1_con / a1_con; Double bac1 = ba1 - 1.0;//(B1/A1-1) Double temp2 = 0.5 * Kshear2_ * dCrtdel * tempk2; Double a2_con = 1.0 + temp2;//A2 Double b2_con = 1.0 - temp2;//B2 Double ba2 = b2_con / a2_con; /*Double bac2 = ba2 - 1.0;//(B2/A2-1)*/ Double tempb1 = (tempm1 + tempk1 / a1_con ) * dCrtdel * 0.25; Double tempa = 0.5 / Mshear_; Double x_con1 = tempa + tempb1;//a1 Double y_con1 = tempa - tempb1;//b1 Double c1dxc1 = 1.0 / x_con1;//1/a1 Double tempb2 = (tempm1 + tempk1 / a1_con+ tempk2 / a2_con) * dCrtdel * 0.25; Double x_con2 = tempa + tempb2;//a2 /*Double y_con2 = tempa - tempb2;//b2*/ Double c1dxc2 = 1.0 / x_con2;//1/a2 Double z1_con = dCrtdel * tempk1 / (4.0 * a1_con); Double z2_con = dCrtdel * tempk2 / (4.0 * a2_con); //Double z_con = z1_con + z2_con;// //;--- partition strains --- Double dev = s->stnE_.s11() + s->stnE_.s22() + s->stnE_.s33(); Double dev3 = d1d3 * dev; Double de11d = s->stnE_.s11() - dev3; Double de22d = s->stnE_.s22() - dev3; Double de33d = s->stnE_.s33() - dev3;//应变计算 //;--- partition stresses--- Double s0 = d1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); Double s11d = s->stnS_.s11() - s0; Double s22d = s->stnS_.s22() - s0; Double s33d = s->stnS_.s33() - s0;//应力计算 //;--- remember old stresses --- Double s11old = s11d; Double s22old = s22d; Double s33old = s33d; Double s12old = s->stnS_.s12(); Double s13old = s->stnS_.s13(); Double s23old = s->stnS_.s23(); //;--- new trial deviator stresses assuming viscoelastic increments --- s11d = (de11d + s11d * y_con1 - Mekd_[0] * bac1) * c1dxc1; s22d = (de22d + s22d * y_con1 - Mekd_[1] * bac1) * c1dxc1; s33d = (de33d + s33d * y_con1 - Mekd_[2] * bac1) * c1dxc1; Double s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con1 - Mekd_[3] * bac1) * c1dxc1; Double s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con1 - Mekd_[4] * bac1) * c1dxc1; Double s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con1 - Mekd_[5] * bac1) * c1dxc1; //;--- new trial isotropic stress assuming elastic increment --- s0 += bulk_ * dev; Double s11i = s11d + s0; Double s22i = s22d + s0; Double s33i = s33d + s0; //; --- trial stresses --- s->stnS_.rs11() = s11i; s->stnS_.rs22() = s22i; s->stnS_.rs33() = s33i; s->stnS_.rs12() = s12i; s->stnS_.rs13() = s13i; s->stnS_.rs23() = s23i; //先标定了没有进入塑性的部分 //下面是在做塑性状态的判断 if (canFail()) { SymTensorInfo info; DVect3 prin = s->stnS_.getEigenInfo(&info); Double e1_ = bulk_ + d2d3 * c1dxc2;//α1 Double e2_ = bulk_ - d1d3 * c1dxc2;//α2 Double ra = e1_ - nps_ * e2_; //Double e21_ = e2_ / e1_; Double rb = e2_ * (1.0 - nps_); Double rd = e2_ - nps_ * e1_;//应力更新公式的λ的系数 //定义塑性部分相关参数 Double G3 = Kshear2_; // 开尔文体弹性模量 (对应Kshear2_) Double A = A_; // 非线性黏壶参数 Double fs = -prin.x() + nph_ * prin.z() - csn_; Double ftz = prin.z() - tension_; Double fty = prin.y() - tension_; Double ftx = prin.x() - tension_;//MC破坏准则 Double fsd = fs / rc_;//(归一化但是还没搞清楚是啥) Double lambda_s_1 = fs / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel)); //λs1 Double lambda_s_2 = fs * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); //λs2 Double lambda_s = lambda_s_1 + lambda_s_2;//λs Double beta_s_xt = ftx / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βx Double gamma_s_xt = ftx * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γx Double lambda_s_xt = beta_s_xt + gamma_s_xt;//λsxt Double beta_s_yt = fty / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βy Double gamma_s_yt = fty * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γy Double lambda_s_yt = beta_s_yt + gamma_s_yt;//λsyt Double beta_s_zt = ftz / (2 * G3)*(1.0 - exp(-G3 * tempk2 * dCrtdel));//βz Double gamma_s_zt = ftz * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1);//γz Double lambda_s_zt = beta_s_zt + gamma_s_zt;//λszt /*if (iPlas == 0) { // 塑性未激活:仅用第一个 Kelvin 元件(原逻辑) s11d = (de11d + s11d * y_con1 - Mekd_[0] * bac1) * c1dxc1; s22d = (de22d + s22d * y_con1 - Mekd_[1] * bac1) * c1dxc1; s33d = (de33d + s33d * y_con1 - Mekd_[2] * bac1) * c1dxc1; s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con1 - Mekd_[3] * bac1) * c1dxc1; s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con1 - Mekd_[4] * bac1) * c1dxc1; s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con1 - Mekd_[5] * bac1) * c1dxc1; } else { //Double s11_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s11d)) / (2 * m1_); //Double s22_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s22d)) / (2 * m1_); //Double s33_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s33d)) / (2 * m1_); //Double s12_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s->stnS_.s12())) / (2 *m1_); //Double s13_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s->stnS_.s13())) / (2 *m1_); //Double s23_2 = (-m2_ + std::sqrt((m2_)*(m2_)+4 * m1_*s->stnS_.s23())) / (2 *m1_); //非线性牛顿体 Double s11_2 = s11d * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s22_2 = s22d * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s33_2 = s33d * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s12_2 = s->stnS_.s12() * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s13_2 = s->stnS_.s13() * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); Double s23_2 = s->stnS_.s23() * tempm2 / (2 * A)*(exp(A* dCrtdel) - 1); // 塑性已激活:使用两个 Kelvin 元件和一个非线性牛顿体 s11d = (de11d + s11d * y_con2 - s11_2 - Mekd_[0] * bac1 - Mekd_[6] * bac2) * c1dxc2; s22d = (de22d + s22d * y_con2 - s22_2 - Mekd_[1] * bac1 - Mekd_[7] * bac2) * c1dxc2; s33d = (de33d + s33d * y_con2 - s33_2 - Mekd_[2] * bac1 - Mekd_[8] * bac2) * c1dxc2; s12i = (s->stnE_.s12() + s->stnS_.s12() * y_con2 - s12_2 - Mekd_[3] * bac1 - Mekd_[9] * bac2) * c1dxc2; s13i = (s->stnE_.s13() + s->stnS_.s13() * y_con2 - s13_2 - Mekd_[4] * bac1 - Mekd_[10] * bac2) * c1dxc2; s23i = (s->stnE_.s23() + s->stnS_.s23() * y_con2 - s23_2 - Mekd_[5] * bac1 - Mekd_[11] * bac2) * c1dxc2; }//应力更新 */ if (fsd > 0.0 && fsd >= ftz) {//剪切塑性修正 iPlas = 1; s->state_ |= shear_now; prin.rx() += lambda_s * ra; prin.ry() += lambda_s * rb; prin.rz() += lambda_s * rd;//已检查 } else if (ftz > 0.0 && ftz >= fsd) { s->state_ |= tension_now;//拉伸塑性修正 if (ftx > 0.0) { iPlas = 4; prin.rx() -= lambda_s_xt * e1_ + (lambda_s_yt + lambda_s_zt) * e2_; prin.ry() -= lambda_s_yt * e1_ + (lambda_s_xt + lambda_s_zt) * e2_; prin.rz() -= lambda_s_zt * e1_ + (lambda_s_xt + lambda_s_yt) * e2_;//三个主应力失效 } else if (fty > 0.0) { iPlas = 3; prin.rx() -= (lambda_s_yt + lambda_s_zt) * e2_; prin.ry() -= (lambda_s_zt * e2_ + lambda_s_yt * e1_); prin.rz() -= (lambda_s_zt * e1_ + lambda_s_yt * e2_);//两个主应力失效 } else { iPlas = 2; //Double tco = ftz * e21_;//应该是用不上了 prin.rx() -= lambda_s_zt * e2_ ; prin.ry() -= lambda_s_zt * e2_ ; prin.rz() -= lambda_s_zt * e1_ ;//一个主应力失效 } } if (friction_ > 0.0) { Double apex = cohesion_ / tan(friction_*degrad); if (prin.x() >= apex || prin.y() >= apex || prin.z() >= apex) {//如果任意方向上的应力超过这个阈值,进入拉伸状态 iPlas = 4; s->state_ |= tension_now; prin.rx() -= lambda_s_xt * e1_ + (lambda_s_yt + lambda_s_zt) * e2_; prin.ry() -= lambda_s_yt * e1_ + (lambda_s_xt + lambda_s_zt) * e2_; prin.rz() -= lambda_s_zt * e1_ + (lambda_s_xt + lambda_s_yt) * e2_; } } if (iPlas) { s->stnS_ = info.resolve(prin);//用当前的prin应力来解析并更新应力状态 if (iPlas == 1) { Double dDe1p = -lambda_s;//1方向的塑性应变增量 Double dDe3p = -1 * lambda_s * nps_;//3方向的塑性应变增量 Double dDepa = d1d3 * (dDe1p + dDe3p); dDe1p -= dDepa; dDe3p -= dDepa; s->working_[Dqs] += sqrt(0.5 * (dDe1p*dDe1p + dDepa * dDepa + dDe3p * dDe3p)) * dSubZoneVolume; } if (iPlas == 2) { Double dAux = lambda_s_zt; s->working_[Dqt] += dAux * dSubZoneVolume; } if (iPlas == 3) { Double dAux = lambda_s_zt + lambda_s_yt; s->working_[Dqt] += dAux * dSubZoneVolume; } if (iPlas == 4) { Double dAux = lambda_s_zt + lambda_s_yt + lambda_s_xt; s->working_[Dqt] += dAux * dSubZoneVolume; } } } //--- sub-zone contribution to Kelvin1-strains --- s0 = d1d3 * (s->stnS_.s11() + s->stnS_.s22() + s->stnS_.s33()); s->working_[0] += (Mekd_[0] * ba1 + (s->stnS_.s11() - s0 + s11old) * z1_con) * s->getSubZoneVolume(); s->working_[1] += (Mekd_[1] * ba1 + (s->stnS_.s22() - s0 + s22old) * z1_con) * s->getSubZoneVolume(); s->working_[2] += (Mekd_[2] * ba1 + (s->stnS_.s33() - s0 + s33old) * z1_con) * s->getSubZoneVolume(); s->working_[3] += (Mekd_[3] * ba1 + (s->stnS_.s12() + s12old) * z1_con) * s->getSubZoneVolume(); s->working_[4] += (Mekd_[4] * ba1 + (s->stnS_.s13() + s13old) * z1_con) * s->getSubZoneVolume(); s->working_[5] += (Mekd_[5] * ba1 + (s->stnS_.s23() + s23old) * z1_con) * s->getSubZoneVolume(); //--- sub-zone contribution to Kelvin2-strains --- s->working_[6] += (Mekd_[6] * ba2 + (s->stnS_.s11() - s0 + s11old) * z2_con) * s->getSubZoneVolume(); s->working_[7] += (Mekd_[7] * ba2 + (s->stnS_.s22() - s0 + s22old) * z2_con) * s->getSubZoneVolume(); s->working_[8] += (Mekd_[8] * ba2 + (s->stnS_.s33() - s0 + s33old) * z2_con) * s->getSubZoneVolume(); s->working_[9] += (Mekd_[9] * ba2 + (s->stnS_.s12() + s12old) * z2_con) * s->getSubZoneVolume(); s->working_[10] += (Mekd_[10] * ba2 + (s->stnS_.s13() + s13old) * z2_con) * s->getSubZoneVolume(); s->working_[11] += (Mekd_[11] * ba2 + (s->stnS_.s23() + s23old) * z2_con) * s->getSubZoneVolume(); //--- update stored Kelvin-strains and plastic strain --- if (s->sub_zone_ == s->total_sub_zones_ - 1) {//这行代码检查是否在最后一个子区域内,如果是,则执行后续的更新操作 Double Aux = 1. / s->getZoneVolume();//Aux变量是区域体积的倒数 if (s->overlay_ == 2) Aux *= 0.5;//如果overlay_等于2,则Aux乘以0.5. Mekd_[0] = s->working_[0] * Aux; Mekd_[1] = s->working_[1] * Aux; Mekd_[2] = s->working_[2] * Aux; Mekd_[3] = s->working_[3] * Aux; Mekd_[4] = s->working_[4] * Aux; Mekd_[5] = s->working_[5] * Aux; Mekd_[6] = s->working_[6] * Aux; Mekd_[7] = s->working_[7] * Aux; Mekd_[8] = s->working_[8] * Aux; Mekd_[9] = s->working_[9] * Aux; Mekd_[10] = s->working_[10] * Aux; Mekd_[11] = s->working_[11] * Aux; if (canFail()) { sHP_ += s->working_[Dqs] * Aux; tHP_ += s->working_[Dqt] * Aux; } } // excerpt-run-end } } // namespace models // EOF这样改呢
最新发布
10-30
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值